【YOLOv11多模态融合改进】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
一、本文介绍
本文记录的是利用 DCMPNet中的 MFM 模块改进 YOLOv11 的多模态融合部分 。
MFM
模块通过
动态调制特征融合
过程,实现了
对多尺度、跨层级特征的智能聚合
。将其应用于
YOLOv11
的改进过程中,针对目标检测中
边界特征
与
语义信息
的互补性需求,
缓解网络中浅层细节与深层语义融合不足的问题
。
二、MFM介绍
Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing
2.1 设计出发点
在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层的纹理细节与深层的语义结构)。
传统的特征融合方法(如简单相加或拼接)难以动态适应不同特征的重要性差异,可能导致关键信息被稀释或次要信息过度增强。 MFM模块的核心目标是通过动态调整特征融合权重,增强网络对关键特征的敏感度,提升特征表示能力 ,从而优化去雾结果的细节恢复和结构一致性。
2.2 模块结构
-
输入特征
接收来自不同路径的特征图(如编码器的输出特征与解码器的中间特征),例如:- F ^ l e g m 1 \hat{F}_{legm}^{1} F ^ l e g m 1 :来自编码器的局部-全局特征融合结果
- F r c 1 F_{rc}^{1} F rc 1 :经过3×3卷积处理的浅层特征。
-
权重生成组件
- 全局平均池化(GAP) :对输入特征进行全局上下文感知,压缩空间维度以提取全局统计信息。
- 多层感知机(MLP) :通过非线性变换生成初步的权重向量。
- Softmax归一化 :将权重向量归一化为概率分布,得到系数矩阵 A r , c 1 A_{r,c}^{1} A r , c 1 ,表示各通道/空间位置特征在融合中的重要性。
-
特征调制与融合
-
特征加权
:利用系数矩阵
A
r
,
c
1
A_{r,c}^{1}
A
r
,
c
1
对输入特征进行逐元素相乘(
⊙
\odot
⊙
),突出关键特征并抑制冗余信息:
F ~ r c 1 = A r , c 1 ⊙ F ^ l e g m 1 + A r , c 1 ⊙ F r c 1 \tilde{F}_{rc}^{1} = A_{r,c}^{1} \odot \hat{F}_{legm}^{1} + A_{r,c}^{1} \odot F_{rc}^{1} F ~ rc 1 = A r , c 1 ⊙ F ^ l e g m 1 + A r , c 1 ⊙ F rc 1 - 特征拼接与卷积 :将调制后的特征拼接后,通过卷积层进一步融合跨通道信息,输出最终的融合特征。
-
特征加权
:利用系数矩阵
A
r
,
c
1
A_{r,c}^{1}
A
r
,
c
1
对输入特征进行逐元素相乘(
⊙
\odot
⊙
),突出关键特征并抑制冗余信息:
2.3 模块特点
-
动态特征加权
通过自适应学习的权重矩阵,MFM模块能够根据输入内容动态调整不同特征的贡献度。例如,在去雾任务中,针对雾霾残留较多的区域,模块会增强对应的深层语义特征;而对于纹理丰富的细节区域,则强化浅层的局部特征。 -
跨层级特征交互
融合编码器的深层语义特征与解码器的浅层细节特征,缓解传统U型网络中浅层特征在跨层传输时的“稀释”问题,提升图像结构的稳定性和细节的清晰度。
论文: https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_Depth_Information_Assisted_Collaborative_Mutual_Promotion_Network_for_Single_Image_CVPR_2024_paper.pdf
源码: https://github.com/zhoushen1/DCMPNet
三、MFM的实现代码
MFM模块
的实现代码如下:
import torch
import torch.nn as nn
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class MFM(nn.Module):
def __init__(self, inc, dim, reduction=8):
super(MFM, self).__init__()
self.height = len(inc)
d = max(int(dim/reduction), 4)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(
nn.Conv2d(dim, d, 1, bias=False),
nn.ReLU(),
nn.Conv2d(d, dim * self.height, 1, bias=False)
)
self.softmax = nn.Softmax(dim=1)
self.conv1x1 = nn.ModuleList([])
for i in inc:
if i != dim:
self.conv1x1.append(Conv(i, dim, 1))
else:
self.conv1x1.append(nn.Identity())
def forward(self, in_feats_):
in_feats = []
for idx, layer in enumerate(self.conv1x1):
in_feats.append(layer(in_feats_[idx]))
B, C, H, W = in_feats[0].shape
in_feats = torch.cat(in_feats, dim=1)
in_feats = in_feats.view(B, self.height, C, H, W)
feats_sum = torch.sum(in_feats, dim=1)
attn = self.mlp(self.avg_pool(feats_sum))
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
out = torch.sum(in_feats*attn, dim=1)
return out
四、添加步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
MFM.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .MFM import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
然后,在
parse_model函数
中添加如下代码:
elif m in {MFM}:
if args[0] == 'head_channel':
args[0] = d[args[0]]
c1 = [ch[x] for x in f]
c2 = make_divisible(min(args[0], max_channels) * width, 8)
args = [c1, c2, *args[1:]]
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将MFM模块应用到YOLOv11的中期融合中。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
- [[7, 18], 1, MFM, [512]] # 25 cat backbone P3
- [[9, 20], 1, MFM, [512]] # 26 cat backbone P4
- [[13, 24], 1, MFM, [1024]] # 27 cat backbone P5
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 26], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 30
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 25], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 33 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 30], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 36 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 27], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 39 (P5/32-large)
- [[33, 36, 39], 1, Detect, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
YOLOv11-mid-MFM :
YOLO11-mid-MFM summary: 501 layers, 3,992,371 parameters, 3,992,355 gradients, 9.6 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 [7, 18] 1 6144 ultralytics.nn.AddModules.MFM.MFM [[128, 128], 128]
26 [9, 20] 1 6144 ultralytics.nn.AddModules.MFM.MFM [[128, 128], 128]
27 [13, 24] 1 24576 ultralytics.nn.AddModules.MFM.MFM [[256, 256], 256]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 26] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
31 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 25] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
34 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
35 [-1, 30] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
37 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
38 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
40 [33, 36, 39] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLO11-mid-MFM summary: 501 layers, 3,992,371 parameters, 3,992,355 gradients, 9.6 GFLOPs