【RT-DETR多模态融合改进】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
一、本文介绍
本文记录的是利用 DCMPNet中的 MFM 模块改进 RT-DETR 的多模态融合部分 。
MFM
模块通过
动态调制特征融合
过程,实现了
对多尺度、跨层级特征的智能聚合
。将其应用于
YOLOv12
的改进过程中,针对目标检测中
边界特征
与
语义信息
的互补性需求,
缓解网络中浅层细节与深层语义融合不足的问题
。
二、MFM介绍
Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing
2.1 设计出发点
在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层的纹理细节与深层的语义结构)。
传统的特征融合方法(如简单相加或拼接)难以动态适应不同特征的重要性差异,可能导致关键信息被稀释或次要信息过度增强。 MFM模块的核心目标是通过动态调整特征融合权重,增强网络对关键特征的敏感度,提升特征表示能力 ,从而优化去雾结果的细节恢复和结构一致性。
2.2 模块结构
-
输入特征
接收来自不同路径的特征图(如编码器的输出特征与解码器的中间特征),例如:- F ^ l e g m 1 \hat{F}_{legm}^{1} F ^ l e g m 1 :来自编码器的局部-全局特征融合结果
- F r c 1 F_{rc}^{1} F rc 1 :经过3×3卷积处理的浅层特征。
-
权重生成组件
- 全局平均池化(GAP) :对输入特征进行全局上下文感知,压缩空间维度以提取全局统计信息。
- 多层感知机(MLP) :通过非线性变换生成初步的权重向量。
- Softmax归一化 :将权重向量归一化为概率分布,得到系数矩阵 A r , c 1 A_{r,c}^{1} A r , c 1 ,表示各通道/空间位置特征在融合中的重要性。
-
特征调制与融合
-
特征加权
:利用系数矩阵
A
r
,
c
1
A_{r,c}^{1}
A
r
,
c
1
对输入特征进行逐元素相乘(
⊙
\odot
⊙
),突出关键特征并抑制冗余信息:
F ~ r c 1 = A r , c 1 ⊙ F ^ l e g m 1 + A r , c 1 ⊙ F r c 1 \tilde{F}_{rc}^{1} = A_{r,c}^{1} \odot \hat{F}_{legm}^{1} + A_{r,c}^{1} \odot F_{rc}^{1} F ~ rc 1 = A r , c 1 ⊙ F ^ l e g m 1 + A r , c 1 ⊙ F rc 1 - 特征拼接与卷积 :将调制后的特征拼接后,通过卷积层进一步融合跨通道信息,输出最终的融合特征。
-
特征加权
:利用系数矩阵
A
r
,
c
1
A_{r,c}^{1}
A
r
,
c
1
对输入特征进行逐元素相乘(
⊙
\odot
⊙
),突出关键特征并抑制冗余信息:
2.3 模块特点
-
动态特征加权
通过自适应学习的权重矩阵,MFM模块能够根据输入内容动态调整不同特征的贡献度。例如,在去雾任务中,针对雾霾残留较多的区域,模块会增强对应的深层语义特征;而对于纹理丰富的细节区域,则强化浅层的局部特征。 -
跨层级特征交互
融合编码器的深层语义特征与解码器的浅层细节特征,缓解传统U型网络中浅层特征在跨层传输时的“稀释”问题,提升图像结构的稳定性和细节的清晰度。
论文: https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_Depth_Information_Assisted_Collaborative_Mutual_Promotion_Network_for_Single_Image_CVPR_2024_paper.pdf
源码: https://github.com/zhoushen1/DCMPNet
三、MFM的实现代码
MFM模块
的实现代码如下:
import torch
import torch.nn as nn
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class MFM(nn.Module):
def __init__(self, inc, dim, reduction=8):
super(MFM, self).__init__()
self.height = len(inc)
d = max(int(dim/reduction), 4)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.mlp = nn.Sequential(
nn.Conv2d(dim, d, 1, bias=False),
nn.ReLU(),
nn.Conv2d(d, dim * self.height, 1, bias=False)
)
self.softmax = nn.Softmax(dim=1)
self.conv1x1 = nn.ModuleList([])
for i in inc:
if i != dim:
self.conv1x1.append(Conv(i, dim, 1))
else:
self.conv1x1.append(nn.Identity())
def forward(self, in_feats_):
in_feats = []
for idx, layer in enumerate(self.conv1x1):
in_feats.append(layer(in_feats_[idx]))
B, C, H, W = in_feats[0].shape
in_feats = torch.cat(in_feats, dim=1)
in_feats = in_feats.view(B, self.height, C, H, W)
feats_sum = torch.sum(in_feats, dim=1)
attn = self.mlp(self.avg_pool(feats_sum))
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
out = torch.sum(in_feats*attn, dim=1)
return out
四、添加步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
MFM.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .MFM import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
然后,在
parse_model函数
中添加如下代码:
elif m in {MFM}:
if args[0] == 'head_channel':
args[0] = d[args[0]]
c1 = [ch[x] for x in f]
c2 = make_divisible(min(args[0], max_channels) * width, 8)
args = [c1, c2, *args[1:]]
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将MFM模块应用到RT-DETR的中期融合中。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
- [[8, 16], 1, MFM, [128]] # 19 cat backbone P3
- [[9, 17], 1, MFM, [256]] # 20 cat backbone P4
- [[10, 18], 1, MFM, [512]] # 21 cat backbone P5
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 22 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 24, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 25
- [20, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 26 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 28, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 29, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 30
- [19, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 31 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 32 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (33), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 34, downsample_convs.0
- [[-1, 29], 1, Concat, [1]] # 35 cat Y4
- [-1, 3, RepC3, [256, 0.5]] # F4 (36), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 37, downsample_convs.1
- [[-1, 24], 1, Concat, [1]] # 38 cat Y5
- [-1, 3, RepC3, [256, 0.5]] # F5 (39), pan_blocks.1
- [[33, 36, 39], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
rtdetr-resnet18-mid-MFM :
rtdetr-resnet18-mid-MFM summary: 508 layers, 31,431,892 parameters, 31,431,892 gradients, 92.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 [8, 16] 1 6144 ultralytics.nn.AddModules.MFM.MFM [[128, 128], 128]
20 [9, 17] 1 24576 ultralytics.nn.AddModules.MFM.MFM [[256, 256], 256]
21 [10, 18] 1 98304 ultralytics.nn.AddModules.MFM.MFM [[512, 512], 512]
22 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
23 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
24 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
25 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 20 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
27 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
29 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
30 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
31 19 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
32 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
34 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
35 [-1, 29] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
37 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
38 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
40 [33, 36, 39] 1 3927956 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-MFM summary: 508 layers, 31,431,892 parameters, 31,431,892 gradients, 92.3 GFLOPs