学习资源站

【RT-DETR多模态融合改进】_利用DeformableAttentionTransformer可变形注意力二次改进CGAFusion动态关注不同模态间的目标区域_CGAFusion动态目标检测-

【RT-DETR多模态融合改进】| 利用 Deformable Attention Transformer 可变形注意力 二次改进CGA Fusion 动态关注不同模态间的目标区域

一、本文介绍

本文记录的是利用 DAT 模块改进 RT-DETR 的多模态融合部分 。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。

DAT 全称为 Deformable Attention Transformer ,其作用在于通过 可变形注意力机制 ,同时包含了数据依赖的注意力模式, 克服了常见注意力方法存在的内存计算成本高、受无关区域影响以及数据不可知等问题 。相比一些只提供固定注意力模式的方法, 能更好地聚焦于不同模态间的相关区域并捕捉更有信息的特征。

本文将其用于 CGA Fusion 模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。



二、Deformable Attention Transformer介绍

Vision Transformer with Deformable Attention

2.1 出发点

  • 解决现有注意力机制的问题
    • 现有的 Vision Transformers 存在使用密集注意力导致内存和计算成本过高,特征可能受无关区域影响的问题。
    • Swin Transformer 采用的稀疏注意力是数据不可知的,可能限制对长距离关系建模的能力。
  • 借鉴可变形卷积网络(DCN)的思想
    • DCN 在CNN中通过学习可变形感受野,能在数据依赖的基础上 选择性地关注更有信息的区域 ,取得了很好的效果,启发了在Vision Transformers中探索可变形注意力模式。

在这里插入图片描述

2.2 原理

  • 数据依赖的注意力模式
    • 通过一个 偏移网络(offset network) 根据输入的 查询特征(query features) 学习到 参考点(reference points) 偏移量(offsets) ,从而确定在特征图中需要关注的重要区域。
    • 这种方式使得注意力模块能够以数据依赖的方式聚焦于相关区域, 避免了对无关区域的关注,同时也克服了手工设计的稀疏注意力模式可能丢失相关信息的问题。

2.3 结构

2.3.1 参考点生成

  • 首先在特征图上生成均匀网格的参考点 p ∈ R H G × W G × 2 p \in \mathbb{R}^{H_{G} ×W_{G} ×2} p R H G × W G × 2 ,网格大小是从输入特征图大小按因子 r r r 下采样得到的,即 H G = H / r H_{G}=H / r H G = H / r W G = W / r W_{G}=W / r W G = W / r 。参考点的值是线性间隔的2D坐标,并归一化到 [ − 1 , + 1 ] [-1, +1] [ 1 , + 1 ] 范围。

2.3.2 偏移量计算

  • 将特征图线性投影得到查询令牌 q = x W q q=x W_{q} q = x W q ,然后送入一个轻量级的子网 θ o f f s e t ( ⋅ ) \theta_{offset }(\cdot) θ o ff se t ( ) 生成偏移量 Δ p = θ o f f s e t ( q ) \Delta p=\theta_{offset }(q) Δ p = θ o ff se t ( q ) 。为了稳定训练过程,会对 Δ p \Delta p Δ p 的幅度进行缩放。

2.3.3 特征采样与投影

  • 根据偏移量在变形点的位置对特征进行采样作为键(keys)和值(values),即 k ~ = x ~ W k \tilde{k}=\tilde{x} W_{k} k ~ = x ~ W k v ~ = x ~ W v \tilde{v}=\tilde{x} W_{v} v ~ = x ~ W v ,其中 x ~ = ϕ ( x ; p + Δ p ) \tilde{x}=\phi(x ; p+\Delta p) x ~ = ϕ ( x ; p + Δ p ) ,采样函数 ϕ ( ⋅ ; ⋅ ) \phi(\cdot ; \cdot) ϕ ( ; ) 采用双线性插值。

2.3.4 注意力计算

  • 对查询 q q q 和变形后的键 k ~ \tilde{k} k ~ 进行多头注意力计算,注意力头的输出公式为 z ( m ) = σ ( q ( m ) k ~ ( m ) ⊤ / d + ϕ ( B ^ ; R ) ) v ~ ( m ) z^{(m)}=\sigma\left(q^{(m)} \tilde{k}^{(m) \top} / \sqrt{d}+\phi(\hat{B} ; R)\right) \tilde{v}^{(m)} z ( m ) = σ ( q ( m ) k ~ ( m ) / d + ϕ ( B ^ ; R ) ) v ~ ( m ) ,其中还考虑了相对位置偏移 R R R 和变形点提供的更强大的相对位置偏差 ϕ ( B ^ ; R ) \phi(\hat{B} ; R) ϕ ( B ^ ; R )
    在这里插入图片描述

2.4 优势

  • 灵活性和效率
    • 能够根据输入数据动态地确定关注区域,聚焦于相关信息,避免了对无关区域的计算和关注,提高了模型的效率。
    • 通过学习共享的偏移量,在保持线性空间复杂度的同时,实现了可变形的注意力模式,相比于直接应用DCN机制到注意力模块,大大降低了计算复杂度。
  • 性能优势
    • 在多个基准数据集上的实验表明,基于 可变形注意力模块 构建的 Deformable Attention Transformer 模型在图像分类、目标检测和语义分割等任务上取得了优于竞争基准模型的结果,如在ImageNet分类任务上,相比Swin Transformer在Top - 1准确率上有显著提升。

论文: https://openaccess.thecvf.com/content/CVPR2022/papers/Xia_Vision_Transformer_With_Deformable_Attention_CVPR_2022_paper.pdf
源码: https://github.com/LeapLabTHU/DAT

三、DFAFusion的实现代码

DFAFusion 的实现代码如下:

import einops
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.models.layers import trunc_normal_
import torch.nn.functional as F

class LayerNormProxy(nn.Module):

    def __init__(self, dim):
        super().__init__()
        self.norm = nn.LayerNorm(dim)

    def forward(self, x):
        x = einops.rearrange(x, 'b c h w -> b h w c')
        x = self.norm(x)
        return einops.rearrange(x, 'b h w c -> b c h w')

class DAttentionBaseline(nn.Module):

    def __init__(
            self, q_size=(224,224), kv_size=(224,224), n_heads=8, n_head_channels=32, n_groups=1,
            attn_drop=0.0, proj_drop=0.0, stride=1,
            offset_range_factor=-1, use_pe=True, dwc_pe=True,
            no_off=False, fixed_pe=False, ksize=9, log_cpb=False
    ):

        super().__init__()
        n_head_channels = int(q_size / 8)
        q_size = (q_size, q_size)

        self.dwc_pe = dwc_pe
        self.n_head_channels = n_head_channels
        self.scale = self.n_head_channels ** -0.5
        self.n_heads = n_heads
        self.q_h, self.q_w = q_size
        # self.kv_h, self.kv_w = kv_size
        self.kv_h, self.kv_w = self.q_h // stride, self.q_w // stride
        self.nc = n_head_channels * n_heads
        self.n_groups = n_groups
        self.n_group_channels = self.nc // self.n_groups
        self.n_group_heads = self.n_heads // self.n_groups
        self.use_pe = use_pe
        self.fixed_pe = fixed_pe
        self.no_off = no_off
        self.offset_range_factor = offset_range_factor
        self.ksize = ksize
        self.log_cpb = log_cpb
        self.stride = stride
        kk = self.ksize
        pad_size = kk // 2 if kk != stride else 0

        self.conv_offset = nn.Sequential(
            nn.Conv2d(self.n_group_channels, self.n_group_channels, kk, stride, pad_size, groups=self.n_group_channels),
            LayerNormProxy(self.n_group_channels),
            nn.GELU(),
            nn.Conv2d(self.n_group_channels, 2, 1, 1, 0, bias=False)
        )

        if self.no_off:
            for m in self.conv_offset.parameters():
                m.requires_grad_(False)

        self.proj_q = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_k = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0)

        self.proj_v = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )
        self.proj_out = nn.Conv2d(
            self.nc, self.nc,
            kernel_size=1, stride=1, padding=0
        )

        self.proj_drop = nn.Dropout(proj_drop, inplace=True)
        self.attn_drop = nn.Dropout(attn_drop, inplace=True)

        if self.use_pe and not self.no_off:
            if self.dwc_pe:
                self.rpe_table = nn.Conv2d(
                    self.nc, self.nc, kernel_size=3, stride=1, padding=1, groups=self.nc)
            elif self.fixed_pe:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * self.q_w, self.kv_h * self.kv_w)
                )
                trunc_normal_(self.rpe_table, std=0.01)
            elif self.log_cpb:
                # Borrowed from Swin-V2
                self.rpe_table = nn.Sequential(
                    nn.Linear(2, 32, bias=True),
                    nn.ReLU(inplace=True),
                    nn.Linear(32, self.n_group_heads, bias=False)
                )
            else:
                self.rpe_table = nn.Parameter(
                    torch.zeros(self.n_heads, self.q_h * 2 - 1, self.q_w * 2 - 1)
                )
                trunc_normal_(self.rpe_table, std=0.01)
        else:
            self.rpe_table = None

    @torch.no_grad()
    def _get_ref_points(self, H_key, W_key, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.linspace(0.5, H_key - 0.5, H_key, dtype=dtype, device=device),
            torch.linspace(0.5, W_key - 0.5, W_key, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W_key - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H_key - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2

        return ref

    @torch.no_grad()
    def _get_q_grid(self, H, W, B, dtype, device):

        ref_y, ref_x = torch.meshgrid(
            torch.arange(0, H, dtype=dtype, device=device),
            torch.arange(0, W, dtype=dtype, device=device),
            indexing='ij'
        )
        ref = torch.stack((ref_y, ref_x), -1)
        ref[..., 1].div_(W - 1.0).mul_(2.0).sub_(1.0)
        ref[..., 0].div_(H - 1.0).mul_(2.0).sub_(1.0)
        ref = ref[None, ...].expand(B * self.n_groups, -1, -1, -1)  # B * g H W 2

        return ref

    def forward(self, x):
        x = x
        B, C, H, W = x.size()
        dtype, device = x.dtype, x.device

        q = self.proj_q(x)
        q_off = einops.rearrange(q, 'b (g c) h w -> (b g) c h w', g=self.n_groups, c=self.n_group_channels)
        offset = self.conv_offset(q_off).contiguous()  # B * g 2 Hg Wg
        Hk, Wk = offset.size(2), offset.size(3)
        n_sample = Hk * Wk

        if self.offset_range_factor >= 0 and not self.no_off:
            offset_range = torch.tensor([1.0 / (Hk - 1.0), 1.0 / (Wk - 1.0)], device=device).reshape(1, 2, 1, 1)
            offset = offset.tanh().mul(offset_range).mul(self.offset_range_factor)

        offset = einops.rearrange(offset, 'b p h w -> b h w p')
        reference = self._get_ref_points(Hk, Wk, B, dtype, device)

        if self.no_off:
            offset = offset.fill_(0.0)

        if self.offset_range_factor >= 0:
            pos = offset + reference
        else:
            pos = (offset + reference).clamp(-1., +1.)

        if self.no_off:
            x_sampled = F.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)
            assert x_sampled.size(2) == Hk and x_sampled.size(3) == Wk, f"Size is {x_sampled.size()}"
        else:
            x_sampled = F.grid_sample(
                input=x.reshape(B * self.n_groups, self.n_group_channels, H, W),
                grid=pos[..., (1, 0)],  # y, x -> x, y
                mode='bilinear', align_corners=True)  # B * g, Cg, Hg, Wg

        x_sampled = x_sampled.reshape(B, C, 1, n_sample)
        q = q.reshape(B * self.n_heads, self.n_head_channels, H * W)

        k = self.proj_k(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)
        v = self.proj_v(x_sampled).reshape(B * self.n_heads, self.n_head_channels, n_sample)

        attn = torch.einsum('b c m, b c n -> b m n', q, k)  # B * h, HW, Ns
        attn = attn.mul(self.scale)

        if self.use_pe and (not self.no_off):

            if self.dwc_pe:
                residual_lepe = self.rpe_table(q.reshape(B, C, H, W)).reshape(B * self.n_heads, self.n_head_channels,
                                                                              H * W)
            elif self.fixed_pe:
                rpe_table = self.rpe_table
                attn_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                attn = attn + attn_bias.reshape(B * self.n_heads, H * W, n_sample)
            elif self.log_cpb:
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (
                            q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,
                                                                                                   n_sample,
                                                                                                   2).unsqueeze(1)).mul(
                    4.0)  # d_y, d_x [-8, +8]
                displacement = torch.sign(displacement) * torch.log2(torch.abs(displacement) + 1.0) / np.log2(8.0)
                attn_bias = self.rpe_table(displacement)  # B * g, H * W, n_sample, h_g
                attn = attn + einops.rearrange(attn_bias, 'b m n h -> (b h) m n', h=self.n_group_heads)
            else:
                rpe_table = self.rpe_table
                rpe_bias = rpe_table[None, ...].expand(B, -1, -1, -1)
                q_grid = self._get_q_grid(H, W, B, dtype, device)
                displacement = (
                            q_grid.reshape(B * self.n_groups, H * W, 2).unsqueeze(2) - pos.reshape(B * self.n_groups,
                                                                                                   n_sample,
                                                                                                   2).unsqueeze(1)).mul(
                    0.5)
                attn_bias = F.grid_sample(
                    input=einops.rearrange(rpe_bias, 'b (g c) h w -> (b g) c h w', c=self.n_group_heads,
                                           g=self.n_groups),
                    grid=displacement[..., (1, 0)],
                    mode='bilinear', align_corners=True)  # B * g, h_g, HW, Ns

                attn_bias = attn_bias.reshape(B * self.n_heads, H * W, n_sample)
                attn = attn + attn_bias

        attn = F.softmax(attn, dim=2)
        attn = self.attn_drop(attn)

        out = torch.einsum('b m n, b c n -> b c m', attn, v)

        if self.use_pe and self.dwc_pe:
            out = out + residual_lepe
        out = out.reshape(B, C, H, W)

        y = self.proj_drop(self.proj_out(out))
        h, w = pos.reshape(B, self.n_groups, Hk, Wk, 2), reference.reshape(B, self.n_groups, Hk, Wk, 2)

        return y

class PixelAttention_CGA(nn.Module):
    def __init__(self, dim):
        super(PixelAttention_CGA, self).__init__()
        self.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect' ,groups=dim, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, pattn1):
        B, C, H, W = x.shape
        x = x.unsqueeze(dim=2) # B, C, 1, H, W
        pattn1 = pattn1.unsqueeze(dim=2) # B, C, 1, H, W
        x2 = torch.cat([x, pattn1], dim=2) # B, C, 2, H, W
        x2 = rearrange(x2, 'b c t h w -> b (c t) h w')
        pattn2 = self.pa2(x2)
        pattn2 = self.sigmoid(pattn2)
        return pattn2

class DFAFusion(nn.Module):
    def __init__(self, dim):
        super(DFAFusion, self).__init__()
        self.cfam = DAttentionBaseline(dim)
        self.pa = PixelAttention_CGA(dim)
        self.conv = nn.Conv2d(dim, dim, 1, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, data):
        x, y = data
        initial = x + y
        pattn1 = self.cfam(initial)
        pattn2 = self.sigmoid(self.pa(initial, pattn1))
        result = initial + pattn2 * x + (1 - pattn2) * y
        result = self.conv(result)
        return result

四、融合步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 DFAFusion.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .DFAFusion import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 DFAFusion 模块

在这里插入图片描述

        elif m in {DFAFusion}:
            c2 = ch[f[0]]
            args = [c2]

在这里插入图片描述

最后将 ultralytics/utils/torch_utils.py 中的 get_flops 函数中的 stride 指定为 640

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成DFAFusion,融合骨干部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

  - [[8, 16], 1, DFAFusion, []]  # 19 cat backbone P3
  - [[9, 17], 1, DFAFusion, []]  # 20 cat backbone P4
  - [[10, 18], 1, DFAFusion, []]  # 21 cat backbone P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 22 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 24, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 25
  - [20, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 26 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 28, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 29, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 30
  - [19, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 32 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (33), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.0
  - [[-1, 29], 1, Concat, [1]]  # 35 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (36), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 37, downsample_convs.1
  - [[-1, 24], 1, Concat, [1]]  # 38 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (39), pan_blocks.1

  - [[33, 36, 39], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.2 中-后期融合⭐

📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成DFAFusion,融合FPN部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 33, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 34
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 35 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 37, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 38, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 39
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 40 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 41 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (42), fpn_blocks.1

  - [[21, 33], 1, DFAFusion, []]  # 43 cat backbone P3
  - [[26, 38], 1, DFAFusion, []]  # 44 cat backbone P4
  - [[30, 42], 1, DFAFusion, []]  # 45 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]  # 46, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 47 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (48), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.1
  - [[-1, 43], 1, Concat, [1]]  # 50 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (51), pan_blocks.1

  - [[45, 48, 51], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.3 后期融合⭐

📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成DFAFusion,融合颈部部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 31, downsample_convs.0
  - [[-1, 26], 1, Concat, [1]]  # 32 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (33), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.1
  - [[-1, 21], 1, Concat, [1]]  # 35 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (36), pan_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 37 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 39, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 40
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 41 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 43, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 44, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 45
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 46 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 47 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (48), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 50 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (51), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 52, downsample_convs.1
  - [[-1, 39], 1, Concat, [1]]  # 53 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (54), pan_blocks.1

  - [[30, 48], 1, DFAFusion, []]  # 55 cat backbone P3
  - [[33, 51], 1, DFAFusion, []]  # 56 cat backbone P4
  - [[36, 54], 1, DFAFusion, []]  # 57 cat backbone P5

  - [[55, 56, 57], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

rtdetr-resnet18-mid-DFAFusion

rtdetr-resnet18-mid-DFAFusion summary: 538 layers, 33,202,388 parameters, 33,202,388 gradients, 96.0 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19             [8, 16]  1    107520  ultralytics.nn.AddModules.DFAFusion.DFAFusion[128]
 20             [9, 17]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 21            [10, 18]  1   1413120  ultralytics.nn.AddModules.DFAFusion.DFAFusion[512]
 22                  -1  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 23                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 24                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26                  20  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 27            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 29                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31                  19  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 32            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 34                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 35            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 37                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 38            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 40        [33, 36, 39]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-DFAFusion summary: 538 layers, 33,202,388 parameters, 33,202,388 gradients, 96.0 GFLOPs

rtdetr-resnet18-mid-to-late-DFAFusion

rtdetr-resnet18-mid-to-late-DFAFusion summary: 646 layers, 34,908,116 parameters, 34,908,116 gradients, 110.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 32                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 33                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 36            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 38                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 39                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 41            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 43            [21, 33]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 44            [26, 38]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 45            [30, 42]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 46                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 47            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52        [45, 48, 51]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-to-late-DFAFusion summary: 646 layers, 34,908,116 parameters, 34,908,116 gradients, 110.6 GFLOPs

rtdetr-resnet18-late-DFAFusion

rtdetr-resnet18-late-DFAFusion summary: 730 layers, 37,404,628 parameters, 37,404,628 gradients, 115.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 32            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 34                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 35            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 37                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 38                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 39                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 40                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 41                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 42            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 44                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 45                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 47            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 53            [-1, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 55            [30, 48]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 56            [33, 51]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 57            [36, 54]  1    378880  ultralytics.nn.AddModules.DFAFusion.DFAFusion[256]
 58        [55, 56, 57]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-late-DFAFusion summary: 730 layers, 37,404,628 parameters, 37,404,628 gradients, 115.6 GFLOPs