【RT-DETR多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
一、本文介绍
本文改进 双HS-FPN颈部结构,融合RT-DETR中的多模态特征,以优化目标检测网络模型 。
HS-FPN
借助
通道注意力机制
及独特的
多尺度融合策略
,有效应对
目标尺寸差异及特征稀缺问题
。针对不同模态,其
利用高级特征筛选低级特征
,增强特征表达,助力模型精准定位和识别目标,
减少因尺度变化及特征不足导致的检测误差
,提升
RT-DETR
在多模态检测任务中的准确性与稳定性。
二、HS-FPN介绍
Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases
HS - FPN结构
由
特征选择模块
和
特征融合模块
组成。
-
特征选择模块中,
CA模块先处理输入 特征图 ,经 池化 、 激活函数 确定各通道权重以 过滤特征图 ,DM模块再对不同尺度特征图降维; -
特征融合模块中,利用
SFF机制, 以高级特征为权重筛选低级特征语义信息后融合 ,提升模型检测能力。
2.1 出发点
在白细胞数据集中,白细胞识别任务面临多尺度问题,不同类型白细胞直径通常有差异,相同白细胞在不同显微镜下成像大小也会不同,这使得模型难以准确识别白细胞,所以需要设计HS - FPN来实现多尺度特征融合,帮助模型捕捉更全面的白细胞特征信息。
2.2 结构原理
-
特征选择模块 :由
CA模块和DM模块组成。对于输入特征图 f i n ∈ R C × H × W f_{in } \in R^{C ×H ×W} f in ∈ R C × H × W ,CA模块先进行全局平均池化和全局最大池化,再结合结果,经Sigmoid激活函数确定各通道权重 f C A ∈ R C × 1 × 1 f_{C A} \in R^{C ×1 ×1} f C A ∈ R C × 1 × 1 ,通过与对应尺度特征图相乘得到过滤后的特征图。因不同尺度特征图通道数不同,DM模块用1×1卷积将各尺度特征图通道数降为 256。 -
特征融合模块 :骨干网络生成的多尺度特征图中, 高级特征语义信息丰富但目标定位粗糙,低级特征定位精确但语义信息有限 。传统直接像素求和融合有缺陷,研究中的
SFF模块以高级特征为权重筛选低级特征中的关键语义信息 。对于输入高级特征 f h i g h ∈ R C × H × W f_{high } \in R^{C ×H ×W} f hi g h ∈ R C × H × W 和低级特征 f l o w ∈ R C × H 1 × W 1 f_{low } \in R^{C ×H_{1} ×W_{1}} f l o w ∈ R C × H 1 × W 1 ,先对高级特征用步长为2、卷积核为3 x3的转置卷积扩展,再用双线性插值统一维度得到 f a t t ∈ R C × H 1 × W 1 f_{att } \in R^{C ×H_{1} ×W_{1}} f a tt ∈ R C × H 1 × W 1 ,经CA 模块将高级特征转为注意力权重过滤低级特征,最后融合得到 f o u t ∈ R C × H 1 × W 1 f_{out } \in R^{C ×H_{1} ×W_{1}} f o u t ∈ R C × H 1 × W 1 ,其融合过程公式为 f a t t = B L ( T − C o n v ( f h i g h ) ) f_{att }=B L\left(T - Conv\left(f_{high }\right)\right) f a tt = B L ( T − C o n v ( f hi g h ) ) f o u t = f l o w ∗ C A ( f a t t ) + f a t t f_{out }=f_{low } * C A\left(f_{att }\right)+f_{att } f o u t = f l o w ∗ C A ( f a tt ) + f a tt
2.3 作用
HS-FPN
能够利用通道注意力模块,以
高级语义特征为权重过滤低级特征
,并将筛选后的特征与高级特征逐点相加,实现多尺度特征融合,从而提高模型的特征表达能力,有助于检测到细微特征,增强模型的检测能力。
论文: https://www.sciencedirect.com/science/article/abs/pii/S0010482524000015
源码: https://github.com/JustlfC03/MFDS-DETR
三、HS-FPN的实现代码
HS-FPN模块
的实现代码如下:
import torch
import torch.nn as nn
class ChannelAttention_HSFPN(nn.Module):
def __init__(self, in_planes, ratio=4, flag=True):
super(ChannelAttention_HSFPN, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.conv1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.flag = flag
self.sigmoid = nn.Sigmoid()
nn.init.xavier_uniform_(self.conv1.weight)
nn.init.xavier_uniform_(self.conv2.weight)
def forward(self, x):
avg_out = self.conv2(self.relu(self.conv1(self.avg_pool(x))))
max_out = self.conv2(self.relu(self.conv1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out) * x if self.flag else self.sigmoid(out)
class Multiply(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return x[0] * x[1]
class Add_HSFPN(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.sum(torch.stack(x, dim=0), dim=0)
四、添加步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
HSFPN.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .HSFPN import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
然后,在
parse_model函数
中添加
nn.Conv2d
、
ChannelAttention_HSFPN
、
Multiply
、
Add_HSFPN
:
elif m is ChannelAttention_HSFPN:
c2 = ch[f]
args = [c2, *args]
elif m is Multiply:
c2 = ch[f[0]]
elif m is Add_HSFPN:
c2 = ch[f[-1]]
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将颈部网络换成HSFPN结构。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
- [[8, 16], 1, Concat, [1]] # 19 cat backbone P3
- [[9, 17], 1, Concat, [1]] # 20 cat backbone P4
- [[10, 18], 1, Concat, [1]] # 21 cat backbone P5
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 22 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 23
- [-1, 1, Conv, [256, 1, 1]] # 24, Y5, lateral_convs.0
- [-1, 1, ChannelAttention_HSFPN, []] # 25
- [-1, 1, nn.Conv2d, [256, 1]] # 26
- [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 27
- [20, 1, ChannelAttention_HSFPN, []] # 28
- [-1, 1, nn.Conv2d, [256, 1]] # 29
- [27, 1, ChannelAttention_HSFPN, [4, False]] # 30
- [[-1, -2], 1, Multiply, []] # 31
- [[-1, 27], 1, Add, []] # 32
- [-1, 3, RepC3, [256, 0.5]] # 33 P4/16
- [27, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1, 16]] # 34
- [19, 1, ChannelAttention_HSFPN, []] # 35
- [-1, 1, nn.Conv2d, [256, 1]] # 36
- [34, 1, ChannelAttention_HSFPN, [4, False]] # 37
- [[-1, -2], 1, Multiply, []] # 38
- [[-1, 34], 1, Add, []] # 39
- [-1, 3, RepC3, [256, 0.5]] # 40 P3/8
- [[27, 33, 40], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
5.2 后期融合⭐
📌 此模型的修方法是将两个模态的颈部网络换成HSFPN结构,融合颈部部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
head:
- [10, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 20
- [-1, 1, Conv, [256, 1, 1]] # 21, Y5, lateral_convs.0
- [-1, 1, ChannelAttention_HSFPN, []] # 22
- [-1, 1, nn.Conv2d, [256, 1]] # 23
- [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 24
- [9, 1, ChannelAttention_HSFPN, []] # 25
- [-1, 1, nn.Conv2d, [256, 1]] # 26
- [24, 1, ChannelAttention_HSFPN, [4, False]] # 27
- [[-1, -2], 1, Multiply, []] # 28
- [[-1, 24], 1, Add, []] # 29
- [-1, 3, RepC3, [256, 0.5]] # 30 P4/16
- [24, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1, 16]] # 31
- [8, 1, ChannelAttention_HSFPN, []] # 32
- [-1, 1, nn.Conv2d, [256, 1]] # 33
- [31, 1, ChannelAttention_HSFPN, [4, False]] # 34
- [[-1, -2], 1, Multiply, []] # 35
- [[-1, 31], 1, Add, []] # 36
- [-1, 3, RepC3, [256, 0.5]] # 37 P3/8
- [18, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 38 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 39
- [-1, 1, Conv, [256, 1, 1]] # 40, Y5, lateral_convs.0
- [-1, 1, ChannelAttention_HSFPN, []] # 41
- [-1, 1, nn.Conv2d, [256, 1]] # 42
- [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 43
- [17, 1, ChannelAttention_HSFPN, []] # 44
- [-1, 1, nn.Conv2d, [256, 1]] # 45
- [43, 1, ChannelAttention_HSFPN, [4, False]] # 46
- [[-1, -2], 1, Multiply, []] # 47
- [[-1, 43], 1, Add, []] # 48
- [-1, 3, RepC3, [256, 0.5]] # 49 P4/16
- [43, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1, 16]] # 50
- [16, 1, ChannelAttention_HSFPN, []] # 51
- [-1, 1, nn.Conv2d, [256, 1]] # 52
- [50, 1, ChannelAttention_HSFPN, [4, False]] # 53
- [[-1, -2], 1, Multiply, []] # 54
- [[-1, 50], 1, Add, []] # 55
- [-1, 3, RepC3, [256, 0.5]] # 56 P3/8
- [[24, 43], 1, Concat, [1]] # 55 cat backbone P3
- [[30, 49], 1, Concat, [1]] # 56 cat backbone P4
- [[37, 56], 1, Concat, [1]] # 57 cat backbone P5
- [[55, 56, 57], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
rtdetr-resnet18-mid-HSFPN :
rtdetr-resnet18-mid-HSFPN summary: 426 layers, 29,793,236 parameters, 29,793,236 gradients, 89.9 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 [8, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
20 [9, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 [10, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
23 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
24 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
25 -1 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
26 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
27 -1 1 590080 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1]
28 20 1 131072 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[512]
29 -1 1 131328 torch.nn.modules.conv.Conv2d [512, 256, 1]
30 27 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
31 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
32 [-1, 27] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
33 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
34 27 1 37120 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1, 16]
35 19 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
36 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
37 34 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
38 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
39 [-1, 34] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
40 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
41 [27, 33, 40] 1 3927956 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-HSFPN summary: 426 layers, 29,793,236 parameters, 29,793,236 gradients, 89.9 GFLOPs
rtdetr-resnet18-late-HSFPN :
rtdetr-resnet18-late-HSFPN summary: 563 layers, 32,609,748 parameters, 32,609,748 gradients, 105.7 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 10 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
21 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
22 -1 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
23 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
24 -1 1 590080 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1]
25 9 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
26 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
27 24 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
28 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
29 [-1, 24] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
30 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
31 24 1 37120 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1, 16]
32 8 1 8192 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[128]
33 -1 1 33024 torch.nn.modules.conv.Conv2d [128, 256, 1]
34 31 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
35 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
36 [-1, 31] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
37 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
38 18 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
39 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
40 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
41 -1 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
42 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
43 -1 1 590080 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1]
44 17 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256]
45 -1 1 65792 torch.nn.modules.conv.Conv2d [256, 256, 1]
46 43 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
47 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
48 [-1, 43] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
49 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
50 43 1 37120 torch.nn.modules.conv.ConvTranspose2d [256, 256, 3, 2, 1, 1, 16]
51 16 1 8192 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[128]
52 -1 1 33024 torch.nn.modules.conv.Conv2d [128, 256, 1]
53 50 1 32768 ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4, False]
54 [-1, -2] 1 0 ultralytics.nn.AddModules.HSFPN.Multiply []
55 [-1, 50] 1 0 ultralytics.nn.AddModules.CFT.Add [256]
56 -1 3 592384 ultralytics.nn.modules.block.RepC3 [256, 256, 3, 0.5]
57 [24, 43] 1 0 ultralytics.nn.modules.conv.Concat [1]
58 [30, 49] 1 0 ultralytics.nn.modules.conv.Concat [1]
59 [37, 56] 1 0 ultralytics.nn.modules.conv.Concat [1]
60 [55, 56, 57] 1 3993492 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 512], 256, 300, 4, 8, 3]
rtdetr-resnet18-late-HSFPN summary: 563 layers, 32,609,748 parameters, 32,609,748 gradients, 105.7 GFLOPs