学习资源站

【YOLOv13多模态融合改进】_SDFM表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰-

【YOLOv13多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰

一、本文介绍

本文记录的是利用 SDFM 模块改进 YOLOv13 的多模态融合部分

SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入 通道-空间注意力机制,动态生成跨模态特征融合权重 。该模块可自适应 保留不同模态中的独特信息,抑制背景噪声与光照干扰 实现低层细节的精准对齐与互补增强 ,为后续检测提供 高保真度 的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。



二、SDFM模块介绍

Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity

2.1 出发点

  • 解决浅层特征融合的局限性 :传统像素级融合(如直接叠加)易导致细节冗余或丢失,而SDFM通过 通道-空间注意力机制 动态调整特征权重,实现“结构保留”与“噪声抑制”的平衡。
  • 为高层语义融合奠定基础 :确保浅层特征中的目标位置(如红外热目标)与可见光场景结构(如建筑物轮廓)准确对齐,避免高层语义注入时出现位置偏差。

2.2 结构原理:基于通道-空间注意力的特征调制

2.2.1 核心组件与流程

SDFM模块的架构如图所示,主要包含以下步骤:

在这里插入图片描述

  1. 特征增强

    • 将红外与可见光的浅层特征在通道维度拼接( C ( F i r i , F v i i ) C(\mathcal{F}_{ir}^{i}, \mathcal{F}_{vi}^{i}) C ( F i r i , F v i i ) ),通过 全局平均池化(GAP) 逐点卷积(Pw-Conv) 生成通道注意力权重( δ ( P w − C o n v n ( G A P ( ⋅ ) ) ) \delta(Pw-Conv^{n}(GAP(\cdot))) δ ( Pw C o n v n ( G A P ( ))) )。
    • 权重通过元素乘法作用于原始特征,并与另一分支的特征相加,实现跨模态特征增强:
      F ^ i r i = F i r i ⊕ ( F v i i ⊗ δ ( ⋅ ) ) , F ^ v i i = F v i i ⊕ ( F i r i ⊗ δ ( ⋅ ) ) \hat{\mathcal{F}}_{ir}^{i} = \mathcal{F}_{ir}^{i} \oplus \left(\mathcal{F}_{vi}^{i} \otimes \delta(\cdot)\right), \quad \hat{\mathcal{F}}_{vi}^{i} = \mathcal{F}_{vi}^{i} \oplus \left(\mathcal{F}_{ir}^{i} \otimes \delta(\cdot)\right) F ^ i r i = F i r i ( F v i i δ ( ) ) , F ^ v i i = F v i i ( F i r i δ ( ) )
      (其中 ⊕ \oplus 为元素相加, ⊗ \otimes 为元素相乘, δ \delta δ 为Sigmoid激活函数)
  2. 融合权重生成

    • 将增强后的特征再次拼接,分别输入 通道注意力模块 空间注意力模块 ,生成通道权重( A C i \mathcal{A}_{C}^{i} A C i )和空间权重( A S i \mathcal{A}_{S}^{i} A S i )。
    • 融合权重为两者的元素乘积,经Sigmoid激活后得到最终权重( W i \mathcal{W}^{i} W i ):
      W i = δ ( A C i ⊗ A S i ) \mathcal{W}^{i} = \delta\left(\mathcal{A}_{C}^{i} \otimes \mathcal{A}_{S}^{i}\right) W i = δ ( A C i A S i )
  3. 特征融合

    • 根据融合权重动态分配红外与可见光特征的贡献:
      F f u i = ( W i ⊗ F ^ i r i ) ⊕ ( ( 1 − W i ) ⊗ F ^ v i i ) \mathcal{F}_{fu}^{i} = \left(\mathcal{W}^{i} \otimes \hat{\mathcal{F}}_{ir}^{i}\right) \oplus \left(\left(1-\mathcal{W}^{i}\right) \otimes \hat{\mathcal{F}}_{vi}^{i}\right) F f u i = ( W i F ^ i r i ) ( ( 1 W i ) F ^ v i i )
      (在结构清晰区域(如可见光边缘)保留可见光特征,在热目标区域(如红外热力图)增强红外特征)。

2.3 关键技术特点

  • 轻量化设计 :仅通过逐点卷积(1×1卷积)和池化操作实现注意力机制,计算量小,适用于浅层特征的实时处理。
  • 跨模态交互 :通过通道-空间双重注意力,迫使模型关注红外与可见光特征的互补区域(如红外中的目标位置+可见光中的纹理细节),抑制无关噪声(如红外背景噪声或可见光低光照噪点)。

论文: https://www.sciencedirect.com/science/article/abs/pii/S1566253523001860
源码: https://github.com/Linfeng-Tang/PSFusion

三、SDFM的实现代码

SDFM 的实现代码如下:

import math
import torch.nn as nn
import torch

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def bn(self, x):
        """Apply layer normalization to the input tensor."""
        return nn.LayerNorm(x.shape[1:]).to(x.device)(x)

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class SDFM(nn.Module):
    '''
    superficial detail fusion module
    '''

    def __init__(self, channels=64, r=4):
        super(SDFM, self).__init__()
        inter_channels = int(channels // r)

        self.Recalibrate = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Conv(2 * channels, 2 * inter_channels),
            Conv(2 * inter_channels, 2 * channels, act=nn.Sigmoid()),
        )

        self.channel_agg = Conv(2 * channels, channels)

        self.local_att = nn.Sequential(
            Conv(channels, inter_channels, 1),
            Conv(inter_channels, channels, 1, act=False),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Conv(channels, inter_channels, 1),
            Conv(inter_channels, channels, 1),
        )
        self.sigmoid = nn.Sigmoid()

        # 确保模型在初始化时就被移到 CUDA 上(如果可用)
        if torch.cuda.is_available():
            self.to('cuda')

    def forward(self, data):
        x1, x2 = data
        # 将输入数据移动到与模型相同的设备上
        device = next(self.parameters()).device
        x1 = x1.to(device)
        x2 = x2.to(device)

        _, c, _, _ = x1.shape
        input = torch.cat([x1, x2], dim=1)
        recal_w = self.Recalibrate(input)
        recal_input = recal_w * input  ## 先对特征进行一步自校正
        recal_input = recal_input + input
        x1, x2 = torch.split(recal_input, c, dim=1)
        agg_input = self.channel_agg(recal_input)  ## 进行特征压缩 因为只计算一个特征的权重
        local_w = self.local_att(agg_input)  ## 局部注意力 即spatial attention
        global_w = self.global_att(agg_input)  ## 全局注意力 即channel attention
        w = self.sigmoid(local_w * global_w)  ## 计算特征x1的权重
        xo = w * x1 + (1 - w) * x2  ## fusion results ## 特征聚合
        return xo

四、融合步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 SDFM.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .SDFM import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 SDFM 模块

在这里插入图片描述

        elif m in {SDFM}:
            c2 = ch[f[0]]
            args = [c2]

在这里插入图片描述

DetectionModel 类下,添加如下代码

try:
   m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward on CPU
except RuntimeError:
   try:
       self.model.to(torch.device('cuda'))
       m.stride = torch.tensor([s / x.shape[-2] for x in _forward(
           torch.zeros(1, ch, s, s).to(torch.device('cuda')))])  # forward on CUDA
   except RuntimeError as error:
       raise error

并注释这一行

# m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将原本的中期融合中的Add融合部分换成SDFM,融合骨干部分的多模态信息。

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

  - [[7, 16], 1, SDFM, []]  # 21 cat backbone P3
  - [[9, 18], 1, SDFM, []]  # 22 cat backbone P4
  - [[11, 20], 1, SDFM, []]  # 23 cat backbone P5

head:
  - [[21, 22, 23], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 24, 1, DownsampleConv, []]
  - [[22, 24], 1, FullPAD_Tunnel, []]  # 27     
  - [[21, 25], 1, FullPAD_Tunnel, []]  # 28    
  - [[23, 26], 1, FullPAD_Tunnel, []] # 29 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 27], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 32
  - [[-1, 24], 1, FullPAD_Tunnel, []]  # 33

  - [32, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 28], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 36
  - [25, 1, Conv, [256, 1, 1]]
  - [[36, 37], 1, FullPAD_Tunnel, []]  # 38

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 33], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 41
  - [[-1, 24], 1, FullPAD_Tunnel, []]

  - [41, 1, Conv, [512, 3, 2]]
  - [[-1, 29], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 45 (P5/32-large)
  - [[-1, 26], 1, FullPAD_Tunnel, []]

  - [[38, 42, 46], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.2 后期融合⭐

📌 此模型的修方法是将原本的中-后期融合中的Add融合部分换成SDFM,融合FPN部分的多模态信息。

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

head:
  - [[7, 9, 11], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 21, 1, DownsampleConv, []]
  - [[9, 21], 1, FullPAD_Tunnel, []]  # 24     
  - [[7, 22], 1, FullPAD_Tunnel, []]  # 25    
  - [[11, 23], 1, FullPAD_Tunnel, []] # 26 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 24], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 29
  - [[-1, 21], 1, FullPAD_Tunnel, []]  # 30

  - [29, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 25], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 33
  - [22, 1, Conv, [256, 1, 1]]
  - [[33, 34], 1, FullPAD_Tunnel, []]  # 35

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 38
  - [[-1, 21], 1, FullPAD_Tunnel, []]

  - [38, 1, Conv, [512, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 42 (P5/32-large)
  - [[-1, 23], 1, FullPAD_Tunnel, []]

  - [[16, 18, 20], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 44, 1, DownsampleConv, []]
  - [[18, 44], 1, FullPAD_Tunnel, []]  # 47     
  - [[16, 45], 1, FullPAD_Tunnel, []]  # 48    
  - [[20, 46], 1, FullPAD_Tunnel, []] # 49 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 47], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 52
  - [[-1, 44], 1, FullPAD_Tunnel, []]  # 53

  - [52, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 48], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 56
  - [45, 1, Conv, [256, 1, 1]]
  - [[56, 57], 1, FullPAD_Tunnel, []]  # 58

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 53], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 61
  - [[-1, 44], 1, FullPAD_Tunnel, []]

  - [61, 1, Conv, [512, 3, 2]]
  - [[-1, 49], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 65 (P5/32-large)
  - [[-1, 46], 1, FullPAD_Tunnel, []]

  - [[35, 58], 1, SDFM, []]  # 67 cat backbone P3
  - [[39, 62], 1, SDFM, []]  # 68 cat backbone P4
  - [[43, 66], 1, SDFM, []]  # 69 cat backbone P5

  - [[67, 68, 69], 1, Detect, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

YOLOv13-mid-SDFM

YOLOv13-mid-SDFM summary: 987 layers, 4,040,018 parameters, 4,040,002 gradients, 10.7 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
  8                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
 17                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21             [7, 16]  1     81920  ultralytics.nn.AddModules.SDFM.SDFM          [128]
 22             [9, 18]  1     81920  ultralytics.nn.AddModules.SDFM.SDFM          [128]
 23            [11, 20]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 24        [21, 22, 23]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26                  24  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 27            [22, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 28            [21, 25]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 29            [23, 26]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 33            [-1, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 34                  32  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 37                  25  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 38            [36, 37]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 39                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 40            [-1, 33]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 42            [-1, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 43                  41  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 44            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 46            [-1, 26]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 47        [38, 42, 46]  1    432427  ultralytics.nn.modules.head.Detect           [9, [64, 128, 256]]
YOLOv13-mid-SDFM summary: 987 layers, 4,040,018 parameters, 4,040,002 gradients, 10.7 GFLOPs

YOLOv13-late-SDFM

YOLOv13-late-SDFM summary: 1,270 layers, 5,064,985 parameters, 5,064,969 gradients, 12.7 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
  8                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
 17                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21          [7, 9, 11]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                  21  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 24             [9, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 25             [7, 22]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 26            [11, 23]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 30            [-1, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 31                  29  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 34                  22  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 35            [33, 34]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 36                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 37            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 39            [-1, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 40                  38  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 41            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 43            [-1, 23]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 44        [16, 18, 20]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 45                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46                  44  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 47            [18, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 48            [16, 45]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 49            [20, 46]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 50                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 51            [-1, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 52                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 53            [-1, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 54                  52  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 55            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 56                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 57                  45  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 58            [56, 57]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 59                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 60            [-1, 53]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 61                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 62            [-1, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 63                  61  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 64            [-1, 49]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 66            [-1, 46]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 67            [35, 58]  1     20480  ultralytics.nn.AddModules.SDFM.SDFM          [64]
 68            [39, 62]  1     81920  ultralytics.nn.AddModules.SDFM.SDFM          [128]
 69            [43, 66]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 70        [67, 68, 69]  1    432427  ultralytics.nn.modules.head.Detect           [9, [64, 128, 256]]
YOLOv13-late-SDFM summary: 1,270 layers, 5,064,985 parameters, 5,064,969 gradients, 12.7 GFLOPs