学习资源站

【YOLOv11单模态融合改进】普通数据集的双模型融合改进,涉及中期,中后期,后期融合方式的完整配置步骤以及二次改进方案_yolov11改进的步骤-

【YOLOv11单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案

前言

主题: YOLOv11的单模态融合改进,普通数据集的双模型融合改进(双模型同步提升)

方式: 中期融合、中-后期融合、后期融合。

内容: 包含融合方式详解和完整配置步骤以及二次改进建议,通过融合多个模型的优势实现精度提升。


一、融合方式

输入的是一个模态的数据,所以没有早期的融合。

1.1 中期融合方法及结构图

定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Concat操作合并特征图,送入颈部网络。

结构示意图:

1.2 中-后期融合方法及结构图

定义: 在颈部网络的上采样之后对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部的FPN网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

1.3 后期融合方法及结构图

定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

二、完整配置步骤

相关的配置只涉及单模态,只需在原本的项目包中配置运行即可,不需要使用我提供的多模态项目包。

①:在 ultralytics/nn/modules/block.py 中添加如下代码,并在 __all__ 中添加 “IN”

class IN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x

在这里插入图片描述
②:在 ultralytics/nn/modules/__init__.py 中的 from .block import (...) 添加 IN
在这里插入图片描述
③:在 ultralytics/nn/tasks.py 中的 from ultralytics.nn.modules import (...) 中添加 IN

在这里插入图片描述
至此,添加完成。

三、YAML模型结构

此处以 ultralytics/cfg/models/11/yolo11.yaml 为例,在同目录下创建一个用于自己数据集训练的双模型融合文件,并粘贴下方的模型训练即可。

3.1 中期融合

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []] # 0

  - [0, 1, Conv, [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32
  - [-1, 2, C3k2, [1024, True]]

  - [0, 1, Conv, [64, 3, 2]] # 10-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 11-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 13-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 15-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 17-P5/32
  - [-1, 2, C3k2, [1024, True]]

  - [[5, 14], 1, Concat, [1]]  # 19 cat backbone P3
  - [[7, 16], 1, Concat, [1]]  # 20 cat backbone P4
  - [[9, 18], 1, Concat, [1]]  # 21 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 22
  - [-1, 2, C2PSA, [1024]] # 23

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 26

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 19], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 29 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 32 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 23], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 35 (P5/32-large)

  - [[29, 32, 35], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.2 中-后期融合

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []] # 0

  - [0, 1, Conv, [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 10
  - [-1, 2, C2PSA, [1024]] # 11

  - [0, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 21
  - [-1, 2, C2PSA, [1024]] # 22

# YOLO11n head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 25

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 28 (P3/8-small)

  - [22, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 31

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 34 (P3/8-small)

  - [[11, 22], 1, Concat, [1]]  # 35 cat backbone P3
  - [[25, 31], 1, Concat, [1]]  # 36 cat backbone P4
  - [[28, 34], 1, Concat, [1]]  # 37 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 36], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 40 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 35], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 43 (P5/32-large)

  - [[37, 40, 43], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.3 后期融合

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Ultralytics YOLO11 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolo11
# Task docs: https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []] # 0

  - [0, 1, Conv, [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 10
  - [-1, 2, C2PSA, [1024]] # 11

  - [0, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 21
  - [-1, 2, C2PSA, [1024]] # 22

# YOLO11n head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 25

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 28 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 25], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 31 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 34 (P5/32-large)

  - [22, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 37

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 40 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 37], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 43 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 22], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 46 (P5/32-large)

  - [[11, 22], 1, Concat, [1]]  # 47 cat backbone P3
  - [[31, 43], 1, Concat, [1]]  # 48 cat backbone P4
  - [[34, 46], 1, Concat, [1]]  # 49 cat backbone P5

  - [[47, 48, 49], 1, Detect, [nc]] # Detect(P3, P4, P5)

四、成功运行结果

中期融合结果:

YOLO11-BiModel summary: 434 layers, 3,795,379 parameters, 3,795,363 gradients, 9.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 10                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 11                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 12                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 13                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 14                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 15                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 16                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 17                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 18                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 19             [5, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 20             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 23                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1    127680  ultralytics.nn.modules.block.C3k2            [512, 128, 1, False]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     40288  ultralytics.nn.modules.block.C3k2            [384, 64, 1, False]
 30                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 31            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 33                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 34            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 36        [29, 32, 35]  1    430867  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
YOLO11-BiModel summary: 434 layers, 3,795,379 parameters, 3,795,363 gradients, 9.6 GFLOPs

中-后期融合结果:

YOLO11-BiModel summary: 506 layers, 4,332,051 parameters, 4,332,035 gradients, 11.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 10                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 11                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 12                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 21                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 22                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 23                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 24             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 29                  22  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 32                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 33            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 35            [11, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36            [25, 31]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37            [28, 34]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 39            [-1, 36]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 41                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 42            [-1, 35]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 44        [37, 40, 43]  1    545235  ultralytics.nn.modules.head.Detect           [1, [128, 128, 256]]
YOLO11-BiModel summary: 506 layers, 4,332,051 parameters, 4,332,035 gradients, 11.5 GFLOPs

后期融合结果:

YOLO11-BiModel summary: 562 layers, 7,742,035 parameters, 7,742,019 gradients, 14.2 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 10                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 11                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 12                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 21                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 22                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 23                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 24             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 29                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 30            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 32                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 33            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 35                  22  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 36            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]
 38                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 39            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 41                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 42            [-1, 37]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 44                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 45            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 47            [11, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48            [31, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49            [34, 46]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 50        [47, 48, 49]  1   3423699  ultralytics.nn.modules.head.Detect           [1, [512, 256, 512]]
YOLO11-BiModel summary: 562 layers, 7,742,035 parameters, 7,742,019 gradients, 14.2 GFLOPs

五、二次改进方案

  1. 双模型的二次改进和普通模型的改进一致,主要涉及到C3k2、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。

  2. 两个骨干中均可以再次添加其它模块,需要注意的是融合的时候特征图大小要一致。