学习资源站

【RT-DETR多模态融合改进】_CGAFusion-内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合_rtdetrcgafusion-

【RT-DETR多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合

一、本文介绍

本文记录的是利用 CGA Fusion 模块改进 RT-DETR 的多模态融合部分

CGAFusion (Content-Guided Attention Fusion)通过 内容引导注意力生成空间权重 引导高低层特征的自适应融合 。本文利用 CGA Fusion 模块,通过内容引 导注意力生成空间权重,自适应地融合两个模态的特征 在特征融合阶段实现跨模态语义对齐与噪声抑制 ,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。



二、CGA Fusion模块介绍

DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

2.1 CGA模块(Content-Guided Attention)

2.1.1 设计出发点

传统注意力机制(如FAM、CBAM)存在两大缺陷:

  • 无法处理特征级雾霾不均匀性 :现有方法仅关注图像级雾霾分布(如空间注意力),忽略特征级通道间的雾霾差异。不同通道的特征编码不同语义(如边缘、纹理),需独立分配空间重要性图(SIM)。
  • 通道与空间注意力缺乏交互 :传统模块(如FAM)顺序计算通道和空间注意力,未融合两者信息,导致特征校准不全面。

目标 :生成 通道特定的空间重要性图(Channel-specific SIM) ,同时融合通道与空间注意力,提升特征表示能力。

2.1.2 原理与结构

CGA采用 粗到细(Coarse-to-Fine) 的两阶段注意力生成机制,结构如图所示:

  • 阶段1:生成粗粒度SIM( W c o a W_{coa} W co a

    • 通道注意力( W c W_c W c :通过全局平均池化(GAP)压缩空间维度,经两层1×1卷积生成通道权重,强调关键通道。
    • 空间注意力( W s W_s W s :对通道维度进行GAP和全局最大池化(GMP),经7×7卷积生成空间重要性图,捕捉图像级雾霾分布。
    • 融合粗粒度SIM :通过元素相加融合 W c W_c W c W s W_s W s ,得到初步的通道共享空间注意力图 W c o a W_{coa} W co a
  • 阶段2:细化为通道特定SIM((W))

    • 通道洗牌(Channel Shuffle) :将输入特征 X X X W c o a W_{coa} W co a 按通道交替排列,促进跨通道信息交互。
    • 组卷积(Group Convolution) :通过7×7组卷积(组数等于通道数),利用输入特征内容引导每个通道的SIM细化,生成最终通道特定的 W W W

公式总结
W c o a = W c + W s , W = σ ( G C 7 × 7 ( C S ( [ X , W c o a ] ) ) ) , \begin{aligned} W_{coa} &= W_c + W_s, \\ W &= \sigma\left(\mathcal{G}C_{7×7}\left(CS\left([X, W_{coa}]\right)\right)\right), \end{aligned} W co a W = W c + W s , = σ ( G C 7 × 7 ( CS ( [ X , W co a ] ) ) ) ,
其中 σ \sigma σ 为Sigmoid激活函数, C S ( ⋅ ) CS(\cdot) CS ( ) 为通道洗牌, G C \mathcal{G}C G C 为组卷积。

在这里插入图片描述

2.1.3 优势

  • 通道特异性 :为每个通道分配唯一SIM,精准捕捉不同通道的雾霾分布差异(如纹理丰富区域 vs. 平滑区域),避免传统单通道SIM的语义混淆。
  • 信息交互 :融合通道与空间注意力,通过内容引导(输入特征 X X X )动态调整注意力权重,提升特征表达的灵活性。

2.2 CGA Fusion模块(CGA-Based Mixup Fusion Scheme)

2.2.1 设计出发点

传统特征融合(如相加、拼接)存在 感受野不匹配问题

  • 浅层特征(低层次,如边缘)与深层特征(高层次,如语义)的感受野差异显著,简单融合无法有效对齐信息。
  • 现有混合融合(Mixup)依赖固定权重或自学习标量权重,未考虑空间位置差异。

目标 :利用CGA生成的空间权重,自适应融合高低层特征,解决感受野不匹配并增强梯度流通。

2.2.2 原理与结构

模块结构如图所示:

  • 输入 :编码器的低层特征( F l o w F_{low} F l o w )和解码器的高层特征( F h i g h F_{high} F hi g h )。
  • 注意力权重生成 :将 F l o w F_{low} F l o w F h i g h F_{high} F hi g h 输入CGA,生成空间权重 W W W (范围0-1),其中每个像素值表示低层特征的融合比例。
  • 加权融合
    F fuse = C 1 × 1 ( F l o w ⋅ W + F h i g h ⋅ ( 1 − W ) + F l o w + F h i g h ) , F_{\text{fuse}} = \mathcal{C}_{1×1}\left(F_{low} \cdot W + F_{high} \cdot (1-W) + F_{low} + F_{high}\right), F fuse = C 1 × 1 ( F l o w W + F hi g h ( 1 W ) + F l o w + F hi g h ) ,
    其中 C 1 × 1 \mathcal{C}_{1×1} C 1 × 1 为1×1卷积,用于特征投影。通过 W W W 动态调节高低层特征的贡献,并通过跳跃连接( F l o w + F h i g h F_{low} + F_{high} F l o w + F hi g h )缓解梯度消失。

在这里插入图片描述

2.2.3 优势

  • 自适应融合 :空间权重 W W W 根据特征内容动态调整,例如在边缘区域增强低层特征,在语义区域侧重高层特征,解决感受野不匹配。
  • 梯度优化 :跳跃连接和加权求和机制增强了浅层到深层的信息流动,提升训练稳定性,PSNR较传统Mixup提升0.23 dB。

论文: https://export.arxiv.org/pdf/2301.04805
源码: https://github.com/cecret3350/DEA-Net

三、CGA Fusion的实现代码

CGA Fusion 的实现代码如下:

import torch.nn as nn
import torch
from einops import rearrange

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class SpatialAttention_CGA(nn.Module):
    def __init__(self):
        super(SpatialAttention_CGA, self).__init__()
        self.sa = nn.Conv2d(2, 1, 7, padding=3, padding_mode='reflect' ,bias=True)

    def forward(self, x):
        x_avg = torch.mean(x, dim=1, keepdim=True)
        x_max, _ = torch.max(x, dim=1, keepdim=True)
        x2 = torch.concat([x_avg, x_max], dim=1)
        sattn = self.sa(x2)
        return sattn

class ChannelAttention_CGA(nn.Module):
    def __init__(self, dim, reduction = 8):
        super(ChannelAttention_CGA, self).__init__()
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.ca = nn.Sequential(
            nn.Conv2d(dim, dim // reduction, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(dim // reduction, dim, 1, padding=0, bias=True),
        )

    def forward(self, x):
        x_gap = self.gap(x)
        cattn = self.ca(x_gap)
        return cattn

class PixelAttention_CGA(nn.Module):
    def __init__(self, dim):
        super(PixelAttention_CGA, self).__init__()
        self.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect' ,groups=dim, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x, pattn1):
        B, C, H, W = x.shape
        x = x.unsqueeze(dim=2) # B, C, 1, H, W
        pattn1 = pattn1.unsqueeze(dim=2) # B, C, 1, H, W
        x2 = torch.cat([x, pattn1], dim=2) # B, C, 2, H, W
        x2 = rearrange(x2, 'b c t h w -> b (c t) h w')
        pattn2 = self.pa2(x2)
        pattn2 = self.sigmoid(pattn2)
        return pattn2

class CGAFusion(nn.Module):
    def __init__(self, dim, reduction=8):
        super(CGAFusion, self).__init__()
        self.sa = SpatialAttention_CGA()
        self.ca = ChannelAttention_CGA(dim, reduction)
        self.pa = PixelAttention_CGA(dim)
        self.conv = nn.Conv2d(dim, dim, 1, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, data):
        x, y = data
        initial = x + y
        cattn = self.ca(initial)
        sattn = self.sa(initial)
        pattn1 = sattn + cattn
        pattn2 = self.sigmoid(self.pa(initial, pattn1))
        result = initial + pattn2 * x + (1 - pattn2) * y
        result = self.conv(result)
        return result

四、融合步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 CGAFusion .py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .CGAFusion import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 CGAFusion 模块

在这里插入图片描述

        elif m in {CGAFusion}:
            c2 = ch[f[0]]
            args = [c2]

在这里插入图片描述

最后将 ultralytics/utils/torch_utils.py 中的 get_flops 函数中的 stride 指定为 640

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成CGAFusion,融合骨干部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

  - [[8, 16], 1, CGAFusion, []]  # 19 cat backbone P3
  - [[9, 17], 1, CGAFusion, []]  # 20 cat backbone P4
  - [[10, 18], 1, CGAFusion, []]  # 21 cat backbone P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 22 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 24, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 25
  - [20, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 26 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 28, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 29, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 30
  - [19, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 32 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (33), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.0
  - [[-1, 29], 1, Concat, [1]]  # 35 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (36), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 37, downsample_convs.1
  - [[-1, 24], 1, Concat, [1]]  # 38 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (39), pan_blocks.1

  - [[33, 36, 39], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.2 中-后期融合⭐

📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成CGAFusion,融合FPN部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 33, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 34
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 35 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 37, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 38, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 39
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 40 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 41 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (42), fpn_blocks.1

  - [[21, 33], 1, CGAFusion, []]  # 43 cat backbone P3
  - [[26, 38], 1, CGAFusion, []]  # 44 cat backbone P4
  - [[30, 42], 1, CGAFusion, []]  # 45 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]  # 46, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 47 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (48), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.1
  - [[-1, 43], 1, Concat, [1]]  # 50 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (51), pan_blocks.1

  - [[45, 48, 51], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.3 后期融合⭐

📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成CGAFusion,融合颈部部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 31, downsample_convs.0
  - [[-1, 26], 1, Concat, [1]]  # 32 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (33), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.1
  - [[-1, 21], 1, Concat, [1]]  # 35 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (36), pan_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 37 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 39, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 40
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 41 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 43, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 44, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 45
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 46 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 47 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (48), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 50 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (51), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 52, downsample_convs.1
  - [[-1, 39], 1, Concat, [1]]  # 53 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (54), pan_blocks.1

  - [[30, 48], 1, CGAFusion, []]  # 55 cat backbone P3
  - [[33, 51], 1, CGAFusion, []]  # 56 cat backbone P4
  - [[36, 54], 1, CGAFusion, []]  # 57 cat backbone P5

  - [[55, 56, 57], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

rtdetr-resnet18-mid-CGAFusion

rtdetr-resnet18-mid-CGAFusion summary: 520 layers, 31,823,853 parameters, 31,823,853 gradients, 93.2 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19             [8, 16]  1     33523  ultralytics.nn.AddModules.CGAFusion.CGAFusion[128]
 20             [9, 17]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 21            [10, 18]  1    379555  ultralytics.nn.AddModules.CGAFusion.CGAFusion[512]
 22                  -1  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 23                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 24                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26                  20  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 27            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 29                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31                  19  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 32            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 34                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 35            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 37                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 38            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 40        [33, 36, 39]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-CGAFusion summary: 520 layers, 31,823,853 parameters, 31,823,853 gradients, 93.2 GFLOPs

rtdetr-resnet18-mid-to-late-CGAFusion

rtdetr-resnet18-mid-to-late-CGAFusion summary: 628 layers, 34,095,197 parameters, 34,095,197 gradients, 105.8 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 32                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 33                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 36            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 38                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 39                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 41            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 43            [21, 33]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 44            [26, 38]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 45            [30, 42]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 46                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 47            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52        [45, 48, 51]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-to-late-CGAFusion summary: 628 layers, 34,095,197 parameters, 34,095,197 gradients, 105.8 GFLOPs

rtdetr-resnet18-late-CGAFusion

rtdetr-resnet18-late-CGAFusion summary: 712 layers, 36,591,709 parameters, 36,591,709 gradients, 110.8 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 32            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 34                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 35            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 37                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 38                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 39                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 40                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 41                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 42            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 44                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 45                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 47            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 53            [-1, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 55            [30, 48]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 56            [33, 51]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 57            [36, 54]  1    107907  ultralytics.nn.AddModules.CGAFusion.CGAFusion[256]
 58        [55, 56, 57]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-late-CGAFusion summary: 712 layers, 36,591,709 parameters, 36,591,709 gradients, 110.8 GFLOPs