学习资源站

【YOLOv8多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P5大目标检测层,完整步骤及代码_yolo中期融合-

【YOLOv8多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P5大目标检测层,完整步骤及代码

前言

主题: YOLOv8 的多模态融合改进中增加P6大目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P6多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv8原始模型结构介绍

YOLOv8 原始模型结构如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 16x16 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 16x16 32x32 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 32x32 像素以上的目标。

2.4 新添加针对大目标的检测头

  • 新添加的检测头主要用于检测更大尺寸的目标。尺寸在 64x64 像素以上的超大目标。

💡这是因为在目标检测任务中,随着目标尺寸的增大,需要更能关注到整体轮廓的特征图来有效捕捉大目标特征。

三、P6检测层的多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对大目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  4. 后期融合中,在检测头前增加P6多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P6前期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv, [64, 3, 2]]  # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 2-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 4-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 6-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 8-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 10-P6/64
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 12

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 9], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 15

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 7], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 18 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 21 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 18], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 24 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 15], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [768]]  # 27 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 30 (P5/32-large)

  - [[21, 24, 27, 30], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2 P6中期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]]  # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 10-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 12-P6/64
  - [-1, 3, C2f, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]]  # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 21-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 23-P6/64
  - [-1, 3, C2f, [1024, True]]

  - [[7, 18], 1, Concat, [1]]  # 25 cat backbone P3
  - [[9, 20], 1, Concat, [1]]  # 26 cat backbone P4
  - [[11, 22], 1, Concat, [1]]  # 27 cat backbone P5
  - [[13, 24], 1, Concat, [1]]  # 28 cat backbone P6

  - [-1, 1, SPPF, [1024, 5]] # 29

 # YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 27], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 32

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 26], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 35 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 25], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 38 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 35], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 41 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 32], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [768]]  # 44 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 29], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 47 (P5/32-large)

  - [[38, 41, 44, 47], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 P6中-后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]]  # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 10-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 12-P6/64
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 14

  - [2, 1, Conv, [64, 3, 2]]  # 15-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 16-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 18-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 20-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 22-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 24-P6/64
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 26

 # YOLOv8.0n head
head:
  - [14, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 11], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 29

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 9], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 32 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 7], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 35 (P3/8-small)

  - [26, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 23], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 38

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 21], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 41 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 19], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 44 (P3/8-small)

  - [ [ 14, 26 ], 1, Concat, [ 1 ] ]  # cat head P3  45
  - [ [ 29, 38 ], 1, Concat, [ 1 ] ]  # cat head P4  46
  - [ [ 32, 41 ], 1, Concat, [ 1 ] ]  # cat head P5  47
  - [ [ 35, 44 ], 1, Concat, [ 1 ] ]  # cat head P6  48

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 47], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 51 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 46], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [768]]  # 54 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 45], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 57 (P5/32-large)

  - [[48, 51, 54, 57], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.4 P6后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]]  # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 10-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 12-P6/64
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 14

  - [2, 1, Conv, [64, 3, 2]]  # 15-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 16-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 18-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 20-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]]  # 22-P5/32
  - [-1, 3, C2f, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 24-P6/64
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 26

 # YOLOv8.0n head
head:
  - [14, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 11], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 29

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 9], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 32 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 7], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 35 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 32], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 38 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 29], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [768]]  # 41 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 14], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 44 (P5/32-large)

  - [26, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 23], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [768]]  # 47

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 21], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [512]]  # 50 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 19], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 53 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 50], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 56 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 47], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [768]]  # 59 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 26], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 62 (P5/32-large)

  - [ [ 35, 53 ], 1, Concat, [ 1 ] ]  # cat head P3  63
  - [ [ 38, 56 ], 1, Concat, [ 1 ] ]  # cat head P4  64
  - [ [ 41, 59 ], 1, Concat, [ 1 ] ]  # cat head P5  65
  - [ [ 44, 62 ], 1, Concat, [ 1 ] ]  # cat head P6  66

  - [[63, 64, 65, 66], 1, Detect, [nc]]  # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv8-early-p6 summary: 340 layers, 4,424,844 parameters, 4,424,828 gradients, 7.8 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  4                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  5                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  6                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  7                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  8                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
  9                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 10                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1    308352  ultralytics.nn.modules.block.C2f             [448, 192, 1]
 16                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 17             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 19                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 20             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 22                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 23            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 25                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 26            [-1, 15]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    283776  ultralytics.nn.modules.block.C2f             [320, 192, 1]
 28                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 29            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1    509440  ultralytics.nn.modules.block.C2f             [448, 256, 1]
 31    [21, 24, 27, 30]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLOv8-early-p6 summary: 340 layers, 4,424,844 parameters, 4,424,828 gradients, 7.8 GFLOPs

中期融合结果:

YOLOv8-mid-p6 summary: 441 layers, 6,445,748 parameters, 6,445,732 gradients, 10.3 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 22                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 23                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 24                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 25             [7, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26             [9, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27            [11, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28            [13, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    345216  ultralytics.nn.modules.block.C2f             [640, 192, 1]
 33                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1    156416  ultralytics.nn.modules.block.C2f             [448, 128, 1]
 36                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 37            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     41344  ultralytics.nn.modules.block.C2f             [256, 64, 1]
 39                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 40            [-1, 35]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 42                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 43            [-1, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1    283776  ultralytics.nn.modules.block.C2f             [320, 192, 1]
 45                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 46            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1    509440  ultralytics.nn.modules.block.C2f             [448, 256, 1]
 48    [38, 41, 44, 47]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLOv8-mid-p6 summary: 441 layers, 6,445,748 parameters, 6,445,732 gradients, 10.3 GFLOPs

中-后期融合结果:

YOLOv8-mid-to-late-p6 summary: 500 layers, 7,104,628 parameters, 7,104,612 gradients, 12.4 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 14                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 15                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 16                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 17                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 18                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 19                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 20                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 21                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 22                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 23                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 24                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 25                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 26                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 27                  14  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    308352  ultralytics.nn.modules.block.C2f             [448, 192, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 33                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 36                  26  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 37            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1    308352  ultralytics.nn.modules.block.C2f             [448, 192, 1]
 39                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 42                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 43            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 45            [14, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46            [29, 38]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47            [32, 41]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48            [35, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 50            [-1, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 52                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 53            [-1, 46]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  1    320640  ultralytics.nn.modules.block.C2f             [512, 192, 1]
 55                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 56            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 57                  -1  1    574976  ultralytics.nn.modules.block.C2f             [704, 256, 1]
 58    [48, 51, 54, 57]  1    742228  ultralytics.nn.modules.head.Detect           [1, [128, 128, 192, 256]]
YOLOv8-mid-to-late-p6 summary: 500 layers, 7,104,628 parameters, 7,104,612 gradients, 12.4 GFLOPs

后期融合结果:

YOLOv8-late-p6 summary: 557 layers, 8,794,548 parameters, 8,794,532 gradients, 13.7 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 14                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 15                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 16                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 17                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 18                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 19                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 20                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 21                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 22                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 23                  -1  1    259200  ultralytics.nn.modules.block.C2f             [192, 192, 1, True]
 24                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 25                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 26                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 27                  14  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    308352  ultralytics.nn.modules.block.C2f             [448, 192, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 33                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 36                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 37            [-1, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 39                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 40            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1    283776  ultralytics.nn.modules.block.C2f             [320, 192, 1]
 42                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 43            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1    509440  ultralytics.nn.modules.block.C2f             [448, 256, 1]
 45                  26  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1    308352  ultralytics.nn.modules.block.C2f             [448, 192, 1]
 48                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 49            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 50                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 51                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 52            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 53                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 54                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 55            [-1, 50]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 56                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 57                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 58            [-1, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 59                  -1  1    283776  ultralytics.nn.modules.block.C2f             [320, 192, 1]
 60                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 61            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 62                  -1  1    509440  ultralytics.nn.modules.block.C2f             [448, 256, 1]
 63            [35, 53]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 64            [38, 56]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65            [41, 59]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 66            [44, 62]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 67    [63, 64, 65, 66]  1   1154068  ultralytics.nn.modules.head.Detect           [1, [128, 256, 384, 512]]
YOLOv8-late-p6 summary: 557 layers, 8,794,548 parameters, 8,794,532 gradients, 13.7 GFLOPs