学习资源站

【RT-DETR多模态融合改进】_SDFM表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰_多模态特征融合采用通道注意力机制-

【RT-DETR多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰

一、本文介绍

本文记录的是利用 SDFM 模块改进 RT-DETR 的多模态融合部分

SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入 通道-空间注意力机制,动态生成跨模态特征融合权重 。该模块可自适应 保留不同模态中的独特信息,抑制背景噪声与光照干扰 实现低层细节的精准对齐与互补增强 ,为后续检测提供 高保真度 的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。



二、SDFM模块介绍

Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity

2.1 出发点

  • 解决浅层特征融合的局限性 :传统像素级融合(如直接叠加)易导致细节冗余或丢失,而SDFM通过 通道-空间注意力机制 动态调整特征权重,实现“结构保留”与“噪声抑制”的平衡。
  • 为高层语义融合奠定基础 :确保浅层特征中的目标位置(如红外热目标)与可见光场景结构(如建筑物轮廓)准确对齐,避免高层语义注入时出现位置偏差。

2.2 结构原理:基于通道-空间注意力的特征调制

2.2.1 核心组件与流程

SDFM模块的架构如图所示,主要包含以下步骤:

在这里插入图片描述

  1. 特征增强

    • 将红外与可见光的浅层特征在通道维度拼接( C ( F i r i , F v i i ) C(\mathcal{F}_{ir}^{i}, \mathcal{F}_{vi}^{i}) C ( F i r i , F v i i ) ),通过 全局平均池化(GAP) 逐点卷积(Pw-Conv) 生成通道注意力权重( δ ( P w − C o n v n ( G A P ( ⋅ ) ) ) \delta(Pw-Conv^{n}(GAP(\cdot))) δ ( Pw C o n v n ( G A P ( ))) )。
    • 权重通过元素乘法作用于原始特征,并与另一分支的特征相加,实现跨模态特征增强:
      F ^ i r i = F i r i ⊕ ( F v i i ⊗ δ ( ⋅ ) ) , F ^ v i i = F v i i ⊕ ( F i r i ⊗ δ ( ⋅ ) ) \hat{\mathcal{F}}_{ir}^{i} = \mathcal{F}_{ir}^{i} \oplus \left(\mathcal{F}_{vi}^{i} \otimes \delta(\cdot)\right), \quad \hat{\mathcal{F}}_{vi}^{i} = \mathcal{F}_{vi}^{i} \oplus \left(\mathcal{F}_{ir}^{i} \otimes \delta(\cdot)\right) F ^ i r i = F i r i ( F v i i δ ( ) ) , F ^ v i i = F v i i ( F i r i δ ( ) )
      (其中 ⊕ \oplus 为元素相加, ⊗ \otimes 为元素相乘, δ \delta δ 为Sigmoid激活函数)
  2. 融合权重生成

    • 将增强后的特征再次拼接,分别输入 通道注意力模块 空间注意力模块 ,生成通道权重( A C i \mathcal{A}_{C}^{i} A C i )和空间权重( A S i \mathcal{A}_{S}^{i} A S i )。
    • 融合权重为两者的元素乘积,经Sigmoid激活后得到最终权重( W i \mathcal{W}^{i} W i ):
      W i = δ ( A C i ⊗ A S i ) \mathcal{W}^{i} = \delta\left(\mathcal{A}_{C}^{i} \otimes \mathcal{A}_{S}^{i}\right) W i = δ ( A C i A S i )
  3. 特征融合

    • 根据融合权重动态分配红外与可见光特征的贡献:
      F f u i = ( W i ⊗ F ^ i r i ) ⊕ ( ( 1 − W i ) ⊗ F ^ v i i ) \mathcal{F}_{fu}^{i} = \left(\mathcal{W}^{i} \otimes \hat{\mathcal{F}}_{ir}^{i}\right) \oplus \left(\left(1-\mathcal{W}^{i}\right) \otimes \hat{\mathcal{F}}_{vi}^{i}\right) F f u i = ( W i F ^ i r i ) ( ( 1 W i ) F ^ v i i )
      (在结构清晰区域(如可见光边缘)保留可见光特征,在热目标区域(如红外热力图)增强红外特征)。

2.3 关键技术特点

  • 轻量化设计 :仅通过逐点卷积(1×1卷积)和池化操作实现注意力机制,计算量小,适用于浅层特征的实时处理。
  • 跨模态交互 :通过通道-空间双重注意力,迫使模型关注红外与可见光特征的互补区域(如红外中的目标位置+可见光中的纹理细节),抑制无关噪声(如红外背景噪声或可见光低光照噪点)。

论文: https://www.sciencedirect.com/science/article/abs/pii/S1566253523001860
源码: https://github.com/Linfeng-Tang/PSFusion

三、SDFM的实现代码

SDFM 的实现代码如下:

import math
import torch.nn as nn
import torch

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def bn(self, x):
        """Apply layer normalization to the input tensor."""
        return nn.LayerNorm(x.shape[1:]).to(x.device)(x)

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class SDFM(nn.Module):
    '''
    superficial detail fusion module
    '''

    def __init__(self, channels=64, r=4):
        super(SDFM, self).__init__()
        inter_channels = int(channels // r)

        self.Recalibrate = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Conv(2 * channels, 2 * inter_channels),
            Conv(2 * inter_channels, 2 * channels, act=nn.Sigmoid()),
        )

        self.channel_agg = Conv(2 * channels, channels)

        self.local_att = nn.Sequential(
            Conv(channels, inter_channels, 1),
            Conv(inter_channels, channels, 1, act=False),
        )

        self.global_att = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Conv(channels, inter_channels, 1),
            Conv(inter_channels, channels, 1),
        )
        self.sigmoid = nn.Sigmoid()

        # 确保模型在初始化时就被移到 CUDA 上(如果可用)
        if torch.cuda.is_available():
            self.to('cuda')

    def forward(self, data):
        x1, x2 = data
        # 将输入数据移动到与模型相同的设备上
        device = next(self.parameters()).device
        x1 = x1.to(device)
        x2 = x2.to(device)

        _, c, _, _ = x1.shape
        input = torch.cat([x1, x2], dim=1)
        recal_w = self.Recalibrate(input)
        recal_input = recal_w * input  ## 先对特征进行一步自校正
        recal_input = recal_input + input
        x1, x2 = torch.split(recal_input, c, dim=1)
        agg_input = self.channel_agg(recal_input)  ## 进行特征压缩 因为只计算一个特征的权重
        local_w = self.local_att(agg_input)  ## 局部注意力 即spatial attention
        global_w = self.global_att(agg_input)  ## 全局注意力 即channel attention
        w = self.sigmoid(local_w * global_w)  ## 计算特征x1的权重
        xo = w * x1 + (1 - w) * x2  ## fusion results ## 特征聚合
        return xo

四、融合步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 SDFM.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .SDFM import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 SDFM 模块

在这里插入图片描述

        elif m in {SDFM}:
            c2 = ch[f[0]]
            args = [c2]

在这里插入图片描述

DetectionModel 类下,添加如下代码

try:
   m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward on CPU
except RuntimeError:
   try:
       self.model.to(torch.device('cuda'))
       m.stride = torch.tensor([s / x.shape[-2] for x in _forward(
           torch.zeros(1, ch, s, s).to(torch.device('cuda')))])  # forward on CUDA
   except RuntimeError as error:
       raise error

并注释这一行

# m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成SDFM,融合骨干部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

  - [[8, 16], 1, SDFM, []]  # 19 cat backbone P3
  - [[9, 17], 1, SDFM, []]  # 20 cat backbone P4
  - [[10, 18], 1, SDFM, []]  # 21 cat backbone P5

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 22 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 24, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 25
  - [20, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 26 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 28, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 29, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 30
  - [19, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 32 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (33), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.0
  - [[-1, 29], 1, Concat, [1]]  # 35 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (36), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 37, downsample_convs.1
  - [[-1, 24], 1, Concat, [1]]  # 38 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (39), pan_blocks.1

  - [[33, 36, 39], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.2 中-后期融合⭐

📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成SDFM,融合FPN部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 31 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 33, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 34
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 35 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 37, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 38, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 39
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 40 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 41 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (42), fpn_blocks.1

  - [[21, 33], 1, SDFM, []]  # 43 cat backbone P3
  - [[26, 38], 1, SDFM, []]  # 44 cat backbone P4
  - [[30, 42], 1, SDFM, []]  # 45 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]  # 46, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 47 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (48), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.1
  - [[-1, 43], 1, Concat, [1]]  # 50 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (51), pan_blocks.1

  - [[45, 48, 51], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)

5.3 后期融合⭐

📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成SDFM,融合颈部部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 7
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5

  - [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
  - [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
  - [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
  - [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2

  - [-1, 2, Blocks, [64,  BasicBlock, 2, False]] # 15
  - [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
  - [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
  - [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5

head:
  - [10, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 19 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 21, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
  - [9, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 23 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 25, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 26, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
  - [8, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 28 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 29 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (30), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 31, downsample_convs.0
  - [[-1, 26], 1, Concat, [1]]  # 32 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (33), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 34, downsample_convs.1
  - [[-1, 21], 1, Concat, [1]]  # 35 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (36), pan_blocks.1

  - [18, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 37 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]]  # 39, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 40
  - [17, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 41 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256, 0.5]]  # 43, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]  # 44, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 45
  - [16, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 46 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 47 cat backbone P4
  - [-1, 3, RepC3, [256, 0.5]]  # X3 (48), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]  # 49, downsample_convs.0
  - [[-1, 44], 1, Concat, [1]]  # 50 cat Y4
  - [-1, 3, RepC3, [256, 0.5]]  # F4 (51), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]  # 52, downsample_convs.1
  - [[-1, 39], 1, Concat, [1]]  # 53 cat Y5
  - [-1, 3, RepC3, [256, 0.5]]  # F5 (54), pan_blocks.1

  - [[30, 48], 1, SDFM, []]  # 55 cat backbone P3
  - [[33, 51], 1, SDFM, []]  # 56 cat backbone P4
  - [[36, 54], 1, SDFM, []]  # 57 cat backbone P5

  - [[55, 56, 57], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]]  # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

rtdetr-resnet18-mid-SDFM

rtdetr-resnet18-mid-SDFM summary: 548 layers, 33,023,188 parameters, 33,023,188 gradients

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19             [8, 16]  1     81920  ultralytics.nn.AddModules.SDFM.SDFM          [128]
 20             [9, 17]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 21            [10, 18]  1   1310720  ultralytics.nn.AddModules.SDFM.SDFM          [512]
 22                  -1  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 23                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 24                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26                  20  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 27            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 29                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31                  19  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 32            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 34                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 35            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 37                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 38            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 40        [33, 36, 39]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-SDFM summary: 548 layers, 33,023,188 parameters, 33,023,188 gradients

rtdetr-resnet18-mid-to-late-SDFM

rtdetr-resnet18-mid-to-late-SDFM summary: 656 layers, 34,754,516 parameters, 34,754,516 gradients

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 32                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 33                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 36            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 38                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 39                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 41            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 43            [21, 33]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 44            [26, 38]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 45            [30, 42]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 46                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 47            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52        [45, 48, 51]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-to-late-SDFM summary: 656 layers, 34,754,516 parameters, 34,754,516 gradients

rtdetr-resnet18-mid-to-late-SDFM

rtdetr-resnet18-mid-to-late-SDFM summary: 656 layers, 34,754,516 parameters, 34,754,516 gradients

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
  4                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
  5                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
  6                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
  7                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
  8                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
  9                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 10                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 11                   2  1       960  ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
 12                  -1  1      9312  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
 13                  -1  1     18624  ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
 14                  -1  1         0  torch.nn.modules.pooling.MaxPool2d           [3, 2, 1]
 15                  -1  2    152512  ultralytics.nn.AddModules.ResNet.Blocks      [64, 64, 2, 'BasicBlock', 2, False]
 16                  -1  2    526208  ultralytics.nn.AddModules.ResNet.Blocks      [64, 128, 2, 'BasicBlock', 3, False]
 17                  -1  2   2100992  ultralytics.nn.AddModules.ResNet.Blocks      [128, 256, 2, 'BasicBlock', 4, False]
 18                  -1  2   8396288  ultralytics.nn.AddModules.ResNet.Blocks      [256, 512, 2, 'BasicBlock', 5, False]
 19                  10  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 21                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                   9  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 24            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 26                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28                   8  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 29            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 31                  18  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 32                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]
 33                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35                  17  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
 36            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 38                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]
 39                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40                  16  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 41            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 43            [21, 33]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 44            [26, 38]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 45            [30, 42]  1    327680  ultralytics.nn.AddModules.SDFM.SDFM          [256]
 46                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 47            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 49                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]
 50            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  3    657920  ultralytics.nn.modules.block.RepC3           [512, 256, 3, 0.5]
 52        [45, 48, 51]  1   3927956  ultralytics.nn.modules.head.RTDETRDecoder    [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-to-late-SDFM summary: 656 layers, 34,754,516 parameters, 34,754,516 gradients