学习资源站

【YOLOv13单模态融合改进】普通数据集的双模型融合改进,涉及中期,后期融合方式的完整配置步骤以及二次改进方案_普通数据集怎么用于双模态模型-

【YOLOv13单模态融合改进】普通数据集的双模型融合改进,涉及中期、后期融合方式的完整配置步骤以及二次改进方案

前言

主题: YOLOv13的单模态融合改进,普通数据集的双模型融合改进(双模型同步提升)

方式: 中期融合、后期融合。

内容: 包含融合方式详解和完整配置步骤以及二次改进建议,通过融合多个模型的优势实现精度提升。


一、融合方式

输入的是一个模态的数据,所以没有早期的融合。

1.1 中期融合方法及结构图

定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Add操作合并特征图,送入颈部网络。

结构示意图:

1.2 后期融合方法及结构图

定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Add操作合并特征图,送入检测头。

结构示意图:

二、完整配置步骤

相关的配置只涉及单模态,只需在原本的项目包中配置运行即可,不需要使用我提供的多模态项目包。

①:在 ultralytics/nn/modules/block.py 中添加如下代码,并在 __all__ 中添加 “IN”

class IN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x

在这里插入图片描述
②:在 ultralytics/nn/modules/__init__.py 中的 from .block import (...) 添加 IN
在这里插入图片描述
③:在 ultralytics/nn/tasks.py 中的 from ultralytics.nn.modules import (...) 中添加 IN

在这里插入图片描述
至此,添加完成。

三、YAML模型结构

此处以 ultralytics/cfg/models/v13/yolov13.yaml 为例,在同目录下创建一个用于自己数据集训练的双模型融合文件,并粘贴下方的模型训练即可。

3.1 中期融合

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0

  - [0, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [0, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

  - [[5, 14], 1, Add, [1]]  # 21 cat backbone P3
  - [[7, 16], 1, Add, [1]]  # 22 cat backbone P4
  - [[9, 18], 1, Add, [1]]  # 23 cat backbone P5

head:
  - [[19, 20, 21], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 22, 1, DownsampleConv, []]
  - [[20, 22], 1, FullPAD_Tunnel, []]  # 27     
  - [[19, 23], 1, FullPAD_Tunnel, []]  # 28    
  - [[21, 24], 1, FullPAD_Tunnel, []] # 29 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 25], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 32
  - [[-1, 22], 1, FullPAD_Tunnel, []]  # 33

  - [30, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 26], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 36
  - [23, 1, Conv, [256, 1, 1]]
  - [[34, 35], 1, FullPAD_Tunnel, []]  # 38

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 31], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 41
  - [[-1, 22], 1, FullPAD_Tunnel, []]

  - [39, 1, Conv, [512, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 45 (P5/32-large)
  - [[-1, 24], 1, FullPAD_Tunnel, []]

  - [[36, 40, 44], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.2 后期融合

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0

  - [0, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [0, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

head:
  - [[5, 7, 9], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 19, 1, DownsampleConv, []]
  - [[7, 19], 1, FullPAD_Tunnel, []]  # 24     
  - [[5, 20], 1, FullPAD_Tunnel, []]  # 25    
  - [[9, 21], 1, FullPAD_Tunnel, []] # 26 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 29
  - [[-1, 19], 1, FullPAD_Tunnel, []]  # 30

  - [27, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 23], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 33
  - [20, 1, Conv, [256, 1, 1]]
  - [[31, 32], 1, FullPAD_Tunnel, []]  # 35

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 28], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 38
  - [[-1, 19], 1, FullPAD_Tunnel, []]

  - [36, 1, Conv, [512, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 42 (P5/32-large)
  - [[-1, 21], 1, FullPAD_Tunnel, []]

  - [[14, 16, 18], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 42, 1, DownsampleConv, []]
  - [[16, 42], 1, FullPAD_Tunnel, []]  # 47     
  - [[14, 43], 1, FullPAD_Tunnel, []]  # 48    
  - [[18, 44], 1, FullPAD_Tunnel, []] # 49 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 45], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 52
  - [[-1, 42], 1, FullPAD_Tunnel, []]  # 53

  - [50, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 46], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 56
  - [43, 1, Conv, [256, 1, 1]]
  - [[54, 55], 1, FullPAD_Tunnel, []]  # 58

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 51], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 61
  - [[-1, 42], 1, FullPAD_Tunnel, []]

  - [59, 1, Conv, [512, 3, 2]]
  - [[-1, 47], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 65 (P5/32-large)
  - [[-1, 44], 1, FullPAD_Tunnel, []]

  - [[33, 56], 1, Add, [1]]  # 67 cat backbone P3
  - [[37, 60], 1, Add, [1]]  # 68 cat backbone P4
  - [[41, 64], 1, Add, [1]]  # 69 cat backbone P5

  - [[65, 66, 67], 1, Detect, [nc]] # Detect(P3, P4, P5)

四、二次改进方案

  1. 双模型的二次改进和普通模型的改进一致,主要涉及到DSC3k2、A2C2f、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。

  2. 两个骨干中均可以再次添加其它模块,需要注意的是融合的时候特征图大小要一致。