【YOLOv8多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
一、本文介绍
本文记录的是利用 PSFM 模块改进 YOLOv8 的多模态融合部分 。
PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入 跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系 。该模块以可见光语义为引导、红外热信号为补充,通过 双向注意力 计算实现“语义类别”与“热目标位置”的精准对齐,同时 捕捉长距离语义关联 , 增强融合特征的判别性与场景理解能力 ,为检测头 提供包含全局上下文的高层语义表示 ,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。
二、PSFM模块介绍
Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity
2.1 设计目标
- 解决高层语义融合的跨模态鸿沟 :红外图像的热信号与可见光图像的语义类别存在模态差异(如红外“热斑”对应可见光“行人”),需通过语义交互建立跨模态映射。
- 增强全局语义一致性 :确保融合特征中目标的语义标签(如类别)与可见光图像一致,同时保留红外目标的空间位置信息,避免语义混淆(如将车辆热信号误判为行人)。
- 支持复杂场景的语义推理 :通过全局上下文建模,捕捉长距离依赖关系(如“行人-道路”的空间关系),提升模型对复杂场景的理解能力。
2.2 结构原理:基于交叉注意力的全局语义交互
2.2.1 核心组件与流程
PSFM模块的架构如图所示,基于 跨模态交叉注意力机制 (Cross-Attention)实现深层特征的语义融合,主要步骤如下:
- 特征投影与维度变换
-
对红外和可见光的深层特征分别进行投影,生成注意力机制所需的
键(Key)
、
值(Value)
矩阵:
K x i = Reshape ( Conv K x ( F ^ x i ) ) , V x i = Reshape ( Conv V x ( F ^ x i ) ) K_{x}^{i} = \text{Reshape}\left(\text{Conv}_{K}^{x}\left(\hat{\mathcal{F}}_{x}^{i}\right)\right), \quad V_{x}^{i} = \text{Reshape}\left(\text{Conv}_{V}^{x}\left(\hat{\mathcal{F}}_{x}^{i}\right)\right) K x i = Reshape ( Conv K x ( F ^ x i ) ) , V x i = Reshape ( Conv V x ( F ^ x i ) )
(其中 x ∈ { ir , vi } x \in \{\text{ir}, \text{vi}\} x ∈ { ir , vi } , Conv K x \text{Conv}_{K}^{x} Conv K x 和 Conv V x \text{Conv}_{V}^{x} Conv V x 为3×3卷积, Reshape \text{Reshape} Reshape 将特征图展开为 H W × C HW \times C H W × C 的矩阵,便于注意力计算)。
- 跨模态注意力计算
-
以可见光特征为
查询(Query, Q)
,计算其与红外特征的键矩阵
K
ir
i
K_{\text{ir}}^{i}
K
ir
i
的注意力矩阵
A
ir
i
\mathcal{A}_{\text{ir}}^{i}
A
ir
i
:
A ir i = Softmax ( Q i ⋅ ( K ir i ) T ) \mathcal{A}_{\text{ir}}^{i} = \text{Softmax}\left(Q^{i} \cdot (K_{\text{ir}}^{i})^{\text{T}}\right) A ir i = Softmax ( Q i ⋅ ( K ir i ) T )
( A ir i \mathcal{A}_{\text{ir}}^{i} A ir i 表示可见光特征对红外特征的依赖程度,数值越大表明该区域越需要红外语义信息)。 - 同理,计算红外特征对可见光特征的注意力矩阵 A vi i \mathcal{A}_{\text{vi}}^{i} A vi i ,实现双向语义交互。
- 全局语义特征聚合
-
根据注意力矩阵加权聚合跨模态的
值矩阵(Value)
,生成包含全局上下文的特征:
Attn ir i = A ir i ⋅ V ir i , Attn vi i = A vi i ⋅ V vi i \text{Attn}_{\text{ir}}^{i} = \mathcal{A}_{\text{ir}}^{i} \cdot V_{\text{ir}}^{i}, \quad \text{Attn}_{\text{vi}}^{i} = \mathcal{A}_{\text{vi}}^{i} \cdot V_{\text{vi}}^{i} Attn ir i = A ir i ⋅ V ir i , Attn vi i = A vi i ⋅ V vi i -
将聚合后的特征与原始特征相加,并在通道维度拼接,通过卷积层生成最终的融合特征:
F f u i = Conv ( C ( F vi i + Reshape ( Attn ir i ) , F ir i + Reshape ( Attn vi i ) ) ) \mathcal{F}_{fu}^{i} = \text{Conv}\left(\mathcal{C}\left(\mathcal{F}_{\text{vi}}^{i} + \text{Reshape}(\text{Attn}_{\text{ir}}^{i}), \mathcal{F}_{\text{ir}}^{i} + \text{Reshape}(\text{Attn}_{\text{vi}}^{i})\right)\right) F f u i = Conv ( C ( F vi i + Reshape ( Attn ir i ) , F ir i + Reshape ( Attn vi i ) ) )
( C \mathcal{C} C 表示通道拼接,通过残差连接保留原始特征的语义信息,避免注意力机制导致的特征失真)。
3. 关键技术特点
- 双向跨模态交互 :通过可见光与红外特征的双向注意力计算(Q分别来自可见光和红外),实现“以可见光语义为引导对齐红外目标”和“以红外热信号增强可见光语义”的双向优化。
- 全局上下文建模 :注意力机制可捕捉特征图中任意位置的语义依赖关系(如远处行人与近处车辆的关联),解决传统卷积神经网络对长距离依赖建模能力不足的问题。
- 轻量化设计 :仅通过少量卷积层和矩阵运算实现,参数增量小于5%,适用于深层特征的高效语义融合。
论文: https://www.sciencedirect.com/science/article/abs/pii/S1566253523001860
源码: https://github.com/Linfeng-Tang/PSFusion
三、PSFM的实现代码
PSFM
的实现代码如下:
import math
import torch.nn as nn
import torch
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class DWConv(Conv):
"""Depth-wise convolution."""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
"""Initialize Depth-wise convolution with given parameters."""
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
class DSConv(nn.Module):
"""Depthwise Separable Convolution"""
def __init__(self, c1, c2, k=1, s=1, d=1, act=True) -> None:
super().__init__()
self.dwconv = DWConv(c1, c1, 3)
self.pwconv = Conv(c1, c2, 1)
def forward(self, x):
return self.pwconv(self.dwconv(x))
class GEFM(nn.Module):
def __init__(self, in_C, out_C):
super(GEFM, self).__init__()
self.RGB_K= DSConv(out_C, out_C, 3)
self.RGB_V = DSConv(out_C, out_C, 3)
self.Q = DSConv(in_C, out_C, 3)
self.INF_K= DSConv(out_C, out_C, 3)
self.INF_V = DSConv(out_C, out_C, 3)
self.Second_reduce = DSConv(in_C, out_C, 3)
self.gamma1 = nn.Parameter(torch.zeros(1))
self.gamma2 = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, y):
Q = self.Q(torch.cat([x,y], dim=1))
RGB_K = self.RGB_K(x)
RGB_V = self.RGB_V(x)
m_batchsize, C, height, width = RGB_V.size()
RGB_V = RGB_V.view(m_batchsize, -1, width*height)
RGB_K = RGB_K.view(m_batchsize, -1, width*height).permute(0, 2, 1)
RGB_Q = Q.view(m_batchsize, -1, width*height)
RGB_mask = torch.bmm(RGB_K, RGB_Q)
RGB_mask = self.softmax(RGB_mask)
RGB_refine = torch.bmm(RGB_V, RGB_mask.permute(0, 2, 1))
RGB_refine = RGB_refine.view(m_batchsize, -1, height,width)
RGB_refine = self.gamma1*RGB_refine+y
INF_K = self.INF_K(y)
INF_V = self.INF_V(y)
INF_V = INF_V.view(m_batchsize, -1, width*height)
INF_K = INF_K.view(m_batchsize, -1, width*height).permute(0, 2, 1)
INF_Q = Q.view(m_batchsize, -1, width*height)
INF_mask = torch.bmm(INF_K, INF_Q)
INF_mask = self.softmax(INF_mask)
INF_refine = torch.bmm(INF_V, INF_mask.permute(0, 2, 1))
INF_refine = INF_refine.view(m_batchsize, -1, height,width)
INF_refine = self.gamma2 * INF_refine + x
out = self.Second_reduce(torch.cat([RGB_refine, INF_refine], dim=1))
return out
class DenseLayer(nn.Module):
def __init__(self, in_C, out_C, down_factor=4, k=2):
super(DenseLayer, self).__init__()
self.k = k
self.down_factor = down_factor
mid_C = out_C // self.down_factor
self.down = nn.Conv2d(in_C, mid_C, 1)
self.denseblock = nn.ModuleList()
for i in range(1, self.k + 1):
self.denseblock.append(DSConv(mid_C * i, mid_C, 3))
self.fuse = DSConv(in_C + mid_C, out_C, 3)
def forward(self, in_feat):
down_feats = self.down(in_feat)
out_feats = []
for i in self.denseblock:
feats = i(torch.cat((*out_feats, down_feats), dim=1))
out_feats.append(feats)
feats = torch.cat((in_feat, feats), dim=1)
return self.fuse(feats)
class PSFM(nn.Module):
def __init__(self, Channel):
super(PSFM, self).__init__()
self.RGBobj = DenseLayer(Channel, Channel)
self.Infobj = DenseLayer(Channel, Channel)
self.obj_fuse = GEFM(Channel * 2, Channel)
def forward(self, data):
rgb, depth = data
rgb_sum = self.RGBobj(rgb)
Inf_sum = self.Infobj(depth)
out = self.obj_fuse(rgb_sum,Inf_sum)
return out
四、融合步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
PSFM.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .PSFM import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
PSFM
模块
elif m in {PSFM}:
c2 = ch[f[0]]
args = [c2]
最后将
ultralytics/utils/torch_utils.py
中的
get_flops
函数中的
stride
指定为
640
。
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成PSFM,融合骨干部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 3, C2f, [1024, True]]
- [2, 1, Conv, [64, 3, 2]] # 12-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
- [-1, 3, C2f, [1024, True]]
- [[7, 16], 1, PSFM, []] # 21 cat backbone P3
- [[9, 18], 1, PSFM, []] # 22 cat backbone P4
- [[11, 20], 1, PSFM, []] # 23 cat backbone P5
- [-1, 1, SPPF, [1024, 5]] # 24
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 22], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 27
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 21], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 30 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 27], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 33 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 24], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 36 (P5/32-large)
- [[30, 33, 36], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.2 中-后期融合⭐
📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成PSFM,融合FPN部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [2, 1, Conv, [64, 3, 2]] # 13-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 14-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 16-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 18-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 20-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 22
# YOLOv8.0n head
head:
- [12, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 25
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 28 (P3/8-small)
- [22, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 19], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 31
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 17], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 34 (P3/8-small)
- [ [ 12, 22 ], 1, PSFM, [] ] # cat head P3 35
- [ [ 25, 31 ], 1, PSFM, [] ] # cat head P4 36
- [ [ 28, 34 ], 1, PSFM, [] ] # cat head P5 37
- [37, 1, Conv, [256, 3, 2]]
- [[-1, 36], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 40 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 35], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 43 (P5/32-large)
- [[37, 40, 43], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.3 后期融合⭐
📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成PSFM,融合颈部部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [2, 1, Conv, [64, 3, 2]] # 13-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 14-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 16-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 18-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 20-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 22
# YOLOv8.0n head
head:
- [12, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 9], 1, Concat, [1] ] # cat backbone P4
- [-1, 3, C2f, [512]] # 25
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[ -1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 28 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 25], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 31 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 34 (P5/32-large)
- [22, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 19], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 37
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[ -1, 17 ], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 40 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 37], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 43 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 22], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 46 (P5/32-large)
- [[28, 40], 1, PSFM, []] # cat head P5 47
- [[31, 43], 1, PSFM, []] # cat head P5 48
- [[34, 46], 1, PSFM, []] # cat head P5 49
- [[47, 48, 49], 1, Detect, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
YOLOv8-mid-PSFM :
YOLOv8-mid-PSFM summary: 621 layers, 4,844,313 parameters, 4,844,297 gradients, 12.6 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
6 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
7 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
8 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
9 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
12 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
13 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
14 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
15 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
16 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
17 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
18 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
19 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
20 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
21 [7, 16] 1 56226 ultralytics.nn.AddModules.PSFM.PSFM [64]
22 [9, 18] 1 205634 ultralytics.nn.AddModules.PSFM.PSFM [128]
23 [11, 20] 1 784002 ultralytics.nn.AddModules.PSFM.PSFM [256]
24 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
25 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 21] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
31 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
32 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
34 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
35 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
37 [30, 33, 36] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8-mid-PSFM summary: 621 layers, 4,844,313 parameters, 4,844,297 gradients, 12.6 GFLOPs
YOLOv8-mid-to-late-PSFM :
YOLOv8-mid-to-late-PSFM summary: 663 layers, 5,194,393 parameters, 5,194,377 gradients, 13.7 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
6 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
7 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
8 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
9 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
14 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
15 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
16 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
17 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
18 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
19 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
20 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
21 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
22 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
23 12 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
24 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
26 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
27 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
29 22 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
30 [-1, 19] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
32 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
33 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
34 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
35 [12, 22] 1 784002 ultralytics.nn.AddModules.PSFM.PSFM [256]
36 [25, 31] 1 205634 ultralytics.nn.AddModules.PSFM.PSFM [128]
37 [28, 34] 1 56226 ultralytics.nn.AddModules.PSFM.PSFM [64]
38 37 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
39 [-1, 36] 1 0 ultralytics.nn.modules.conv.Concat [1]
40 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
41 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
42 [-1, 35] 1 0 ultralytics.nn.modules.conv.Concat [1]
43 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
44 [37, 40, 43] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8-mid-to-late-PSFM summary: 663 layers, 5,194,393 parameters, 5,194,377 gradients, 13.7 GFLOPs
YOLOv8-late-PSFM :
YOLOv8-late-PSFM summary: 701 layers, 5,995,801 parameters, 5,995,785 gradients, 14.7 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
6 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
7 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
8 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
9 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
14 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
15 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
16 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
17 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
18 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
19 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
20 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
21 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
22 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
23 12 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
24 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
26 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
27 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
29 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
30 [-1, 25] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
32 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
33 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
34 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
35 22 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
36 [-1, 19] 1 0 ultralytics.nn.modules.conv.Concat [1]
37 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
38 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
39 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
40 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
41 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
42 [-1, 37] 1 0 ultralytics.nn.modules.conv.Concat [1]
43 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
44 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
45 [-1, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
46 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
47 [28, 40] 1 56226 ultralytics.nn.AddModules.PSFM.PSFM [64]
48 [31, 43] 1 205634 ultralytics.nn.AddModules.PSFM.PSFM [128]
49 [34, 46] 1 784002 ultralytics.nn.AddModules.PSFM.PSFM [256]
50 [47, 48, 49] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8-late-PSFM summary: 701 layers, 5,995,801 parameters, 5,995,785 gradients, 14.7 GFLOPs