【YOLOv8多模态融合改进】| Arxiv 2024 DEYOLO:利用双增强机制和双向解耦聚焦模块,构建跨模态特征融合与单模态优化的完整框架
一、本文介绍
本文记录的是利用 DEYOLO中的多模态融合模块改进 YOLOv8 的多模态融合部分 。
DEYOLO
针对
RGB
和
红外
多模态目标检测任务设计了
双特征增强机制
,通过
DECA
(双语义增强通道权重分配模块)、
DEPA
(双空间增强像素权重分配模块)和
双向解耦聚焦模块
(Bi-direction Decoupled Focus)实现
跨模态特征融合与单模态特征优化
,
有效解决多模态检测中的信息互补与干扰抑制问题。
二、CGA Fusion模块介绍
DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object Detection
2.1 双语义增强通道权重分配模块(DECA)
-
模块结构
- 输入 :骨干网络提取的RGB特征图 F V 0 F_{V_0} F V 0 和红外特征图 F I R 0 F_{IR_0} F I R 0 (均为 R b × c × h × w \mathbb{R}^{b×c×h×w} R b × c × h × w )。
- 跨模态混合 :将 F V 0 F_{V_0} F V 0 和 F I R 0 F_{IR_0} F I R 0 沿通道维度拼接后,通过卷积操作生成混合特征图 F M i x 0 F_{Mix_0} F M i x 0 ,过滤冗余信息。
- 权重编码 :
- 通过 跨模态权重提取操作(CMWE 将 F M i x 0 F_{Mix_0} F M i x 0 在空间维度压缩为通道权重 W M i x 0 ∈ R b × c × 1 × 1 W_{Mix_0} \in \mathbb{R}^{b×c×1×1} W M i x 0 ∈ R b × c × 1 × 1 ,捕捉跨模态通道依赖。
- 利用 通道权重提取块(CWE) 分别提取单模态通道权重 W V 0 W_{V_0} W V 0 和 W I R 0 W_{IR_0} W I R 0 ,类似SE模块机制。
-
双向增强
:
- 第一增强 :单模态权重与跨模态权重通过Softmax归一化后逐元素相乘,生成增强权重 W e n V 0 W_{enV_0} W e n V 0 和 W e n I R 0 W_{enIR_0} W e n I R 0 ,突出跨模态互补的关键通道。
- 第二增强 :单模态特征图与增强权重相乘,融合另一模态的语义信息,输出 F V 1 F_{V_1} F V 1 和 F I R 1 F_{IR_1} F I R 1 进入DEPA模块。
-
核心优势
- 语义信息增强 :通过通道权重重分配,强化跨模态语义互补(如RGB的纹理与红外的结构),抑制模态间干扰(如红外亮度对RGB细节的掩盖)。
- 双向交互机制 :既利用单模态特征优化跨模态融合结果,又通过融合结果反哺单模态特征,形成闭环增强。
2.2 双空间增强像素权重分配模块(DEPA)
-
模块结构
- 输入 :DECA输出的特征图 F V 1 F_{V_1} F V 1 和 F I R 1 F_{IR_1} F I R 1 。
- 跨模态混合 :通过卷积变换和逐元素相乘生成全局混合特征 W M i x 1 W_{Mix_1} W M i x 1 ,捕捉跨模态空间依赖。
-
多尺度空间权重提取
:
- 使用不同尺寸卷积核(如3×3和5×5)提取单模态空间特征,拼接后压缩通道数,生成单模态像素权重 W V 1 W_{V_1} W V 1 和 W I R 1 W_{IR_1} W I R 1 。
-
双向增强
:
- 第一增强 :单模态空间权重与跨模态混合特征的Softmax结果相乘,生成增强后的空间权重 W e n V 1 W_{enV_1} W e n V 1 和 W e n I R 1 W_{enIR_1} W e n I R 1 ,突出关键像素位置。
- 第二增强 :单模态特征图与增强空间权重相乘,融合另一模态的结构信息,最终逐元素相加输出融合特征。
-
核心优势
- 空间信息对齐 :通过多尺度卷积捕捉不同粒度的空间结构(如边缘、轮廓),解决红外与RGB像素级对齐难题。
- 干扰抑制 :利用跨模态混合特征的Softmax权重抑制冲突区域(如红外无纹理区域对RGB细节的破坏),提升特征一致性。
2.3 双向解耦聚焦模块(Bi-direction Decoupled Focus)
-
模块结构
- 设计灵感 :基于YOLOv5的Focus模块,通过水平和垂直方向的切片采样,实现无信息损失的下采样。
- 双向采样 :将输入特征图分为两组,分别沿水平和垂直方向间隔采样,捕捉相邻和远程像素信息。
- 特征融合 :将采样后的特征图与原始特征图在通道维度拼接,通过深度可分离卷积整合多方向信息,扩大感受野。
-
核心优势
- 多方向特征捕捉 :避免传统下采样导致的边缘信息丢失,尤其适用于红外图像的弱纹理目标检测。
- 轻量化设计 :通过解耦采样和深度卷积,在几乎不增加计算量的前提下提升骨干网络的特征表达能力。
2.4 模块协同优势
-
跨模态融合与单模态优化的统一 :
- DECA和DEPA在特征空间中实现 通道-空间维度的双向增强 ,既融合跨模态互补信息(如RGB语义+红外结构),又通过单模态增强抑制模态间干扰。
- 双向解耦聚焦模块为骨干网络提供更丰富的多方向特征,增强后续DECA/DEPA的特征输入质量。
-
检测任务导向的设计 :
区别于传统图像融合方法(仅关注像素级融合质量),DEYOLO的模块设计完全围绕目标检测优化,例如通过通道/空间权重显式强化目标区域的特征响应。
论文: https://arxiv.org/abs/2412.04931
源码: https://github.com/chips96/DEYOLO
三、DEYOLO的实现代码
DEYOLO
的实现代码如下:
"""
DEA (DECA and DEPA) module
"""
import torch
import torch.nn as nn
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class DEA(nn.Module):
"""x0 --> RGB feature map, x1 --> IR feature map"""
def __init__(self, channel=512, kernel_size=80, p_kernel=None, m_kernel=None, reduction=16):
super().__init__()
self.deca = DECA(channel, kernel_size, p_kernel, reduction)
self.depa = DEPA(channel, m_kernel)
self.act = nn.Sigmoid()
def forward(self, x):
result_vi, result_ir = self.depa(self.deca(x))
return self.act(result_vi + result_ir)
class DECA(nn.Module):
"""x0 --> RGB feature map, x1 --> IR feature map"""
def __init__(self, channel=512, kernel_size=80, p_kernel=None, reduction=16):
super().__init__()
self.kernel_size = kernel_size
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
self.act = nn.Sigmoid()
self.compress = Conv(channel * 2, channel, 3)
"""convolution pyramid"""
if p_kernel is None:
p_kernel = [5, 4]
kernel1, kernel2 = p_kernel
self.conv_c1 = nn.Sequential(nn.Conv2d(channel, channel, kernel1, kernel1, 0, groups=channel), nn.SiLU())
self.conv_c2 = nn.Sequential(nn.Conv2d(channel, channel, kernel2, kernel2, 0, groups=channel), nn.SiLU())
self.conv_c3 = nn.Sequential(
nn.Conv2d(channel, channel, int(self.kernel_size/kernel1/kernel2), int(self.kernel_size/kernel1/kernel2), 0,
groups=channel),
nn.SiLU()
)
def forward(self, x):
b, c, h, w = x[0].size()
w_vi = self.avg_pool(x[0]).view(b, c)
w_ir = self.avg_pool(x[1]).view(b, c)
w_vi = self.fc(w_vi).view(b, c, 1, 1)
w_ir = self.fc(w_ir).view(b, c, 1, 1)
glob_t = self.compress(torch.cat([x[0], x[1]], 1))
glob = self.conv_c3(self.conv_c2(self.conv_c1(glob_t))) if min(h, w) >= self.kernel_size else torch.mean(
glob_t, dim=[2, 3], keepdim=True)
result_vi = x[0] * (self.act(w_ir * glob)).expand_as(x[0])
result_ir = x[1] * (self.act(w_vi * glob)).expand_as(x[1])
return result_vi, result_ir
class DEPA(nn.Module):
"""x0 --> RGB feature map, x1 --> IR feature map"""
def __init__(self, channel=512, m_kernel=None):
super().__init__()
self.conv1 = Conv(2, 1, 5)
self.conv2 = Conv(2, 1, 5)
self.compress1 = Conv(channel, 1, 3)
self.compress2 = Conv(channel, 1, 3)
self.act = nn.Sigmoid()
"""convolution merge"""
if m_kernel is None:
m_kernel = [3, 7]
self.cv_v1 = Conv(channel, 1, m_kernel[0])
self.cv_v2 = Conv(channel, 1, m_kernel[1])
self.cv_i1 = Conv(channel, 1, m_kernel[0])
self.cv_i2 = Conv(channel, 1, m_kernel[1])
def forward(self, x):
w_vi = self.conv1(torch.cat([self.cv_v1(x[0]), self.cv_v2(x[0])], 1))
w_ir = self.conv2(torch.cat([self.cv_i1(x[1]), self.cv_i2(x[1])], 1))
glob = self.act(self.compress1(x[0]) + self.compress2(x[1]))
w_vi = self.act(glob + w_vi)
w_ir = self.act(glob + w_ir)
result_vi = x[0] * w_ir.expand_as(x[0])
result_ir = x[1] * w_vi.expand_as(x[1])
return result_vi, result_ir
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
"""Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
"""Applies the YOLO FPN to input data."""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BiFocus(nn.Module):
def __init__(self, c1, c2):
super().__init__()
self.focus_h = FocusH(c1, c1, 3, 1)
self.focus_v = FocusV(c1, c1, 3, 1)
self.depth_wise = DepthWiseConv(3 * c1, c2, 3)
def forward(self, x):
return self.depth_wise(torch.cat([x, self.focus_h(x), self.focus_v(x)], dim=1))
class FocusH(nn.Module):
def __init__(self, c1, c2, kernel=3, stride=1):
super().__init__()
self.c2 = c2
self.conv1 = Conv(c1, c2, kernel, stride)
self.conv2 = Conv(c1, c2, kernel, stride)
def forward(self, x):
b, _, h, w = x.shape
result = torch.zeros(size=[b, self.c2, h, w], device=x.device, dtype=x.dtype)
x1 = torch.zeros(size=[b, self.c2, h, w // 2], device=x.device, dtype=x.dtype)
x2 = torch.zeros(size=[b, self.c2, h, w // 2], device=x.device, dtype=x.dtype)
x1[..., ::2, :], x1[..., 1::2, :] = x[..., ::2, ::2], x[..., 1::2, 1::2]
x2[..., ::2, :], x2[..., 1::2, :] = x[..., ::2, 1::2], x[..., 1::2, ::2]
x1 = self.conv1(x1)
x2 = self.conv2(x2)
result[..., ::2, ::2] = x1[..., ::2, :]
result[..., 1::2, 1::2] = x1[..., 1::2, :]
result[..., ::2, 1::2] = x2[..., ::2, :]
result[..., 1::2, ::2] = x2[..., 1::2, :]
return result
class FocusV(nn.Module):
def __init__(self, c1, c2, kernel=3, stride=1):
super().__init__()
self.c2 = c2
self.conv1 = Conv(c1, c2, kernel, stride)
self.conv2 = Conv(c1, c2, kernel, stride)
def forward(self, x):
b, _, h, w = x.shape
result = torch.zeros(size=[b, self.c2, h, w], device=x.device, dtype=x.dtype)
x1 = torch.zeros(size=[b, self.c2, h // 2, w], device=x.device, dtype=x.dtype)
x2 = torch.zeros(size=[b, self.c2, h // 2, w], device=x.device, dtype=x.dtype)
x1[..., ::2], x1[..., 1::2] = x[..., ::2, ::2], x[..., 1::2, 1::2]
x2[..., ::2], x2[..., 1::2] = x[..., 1::2, ::2], x[..., ::2, 1::2]
x1 = self.conv1(x1)
x2 = self.conv2(x2)
result[..., ::2, ::2] = x1[..., ::2]
result[..., 1::2, 1::2] = x1[..., 1::2]
result[..., 1::2, ::2] = x2[..., ::2]
result[..., ::2, 1::2] = x2[..., 1::2]
return result
class DepthWiseConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel):
super(DepthWiseConv, self).__init__()
self.depth_conv = Conv(in_channel, in_channel, kernel, 1, 1, in_channel)
self.point_conv = Conv(in_channel, out_channel, 1, 1, 0, 1)
def forward(self, x):
out = self.depth_conv(x)
out = self.point_conv(out)
return out
class C2f_BiFocus(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
self.bifocus = BiFocus(c2, c2)
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
y = self.cv2(torch.cat(y, 1))
return self.bifocus(y)
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class C3f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
expansion.
"""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = [self.cv2(x), self.cv1(x)]
y.extend(m(y[-1]) for m in self.m)
return self.cv3(torch.cat(y, 1))
class C3(nn.Module):
"""CSP Bottleneck with 3 convolutions."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
def forward(self, x):
"""Forward pass through the CSP bottleneck with 2 convolutions."""
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3k(C3):
"""C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
"""Initializes the C3k module with specified channels, number of layers, and configurations."""
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
# self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
class C3k2_BiFocus(C2f_BiFocus):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
"""Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
四、融合步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
DEYOLO.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .DEYOLO import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
C2f_BiFocus, C3k2_BiFocus, DEA
模块
elif m in {C2f_BiFocus, C3k2_BiFocus}:
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [c1, c2, *args[1:]]
elif m is DEA:
c1, c2 = ch[f[0]], args[0]
if c2 != nc:
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [c1, *args[1:]]
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将DEYOLO的核心模块应用到YOLOv8中。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 3, C2f_BiFocus, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [2, 1, Conv, [64, 3, 2]] # 13-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 14-P2/4
- [-1, 3, C2f_BiFocus, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 16-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 18-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 20-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 22
- [[7, 17], 1, DEA, [256, 80]] # 23 cat backbone P3
- [[9, 19], 1, DEA, [512, 40]] # 24 cat backbone P4
- [[12, 22], 1, DEA, [1024, 20]] # 25 cat backbone P5
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 24], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 28
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 23], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 31 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 28], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 34 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 25], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 37 (P5/32-large)
- [[31, 34, 37], 1, Detect, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
YOLOv8-DEYOLO :
YOLOv8-DEYOLO summary: 538 layers, 5,687,503 parameters, 5,687,487 gradients, 15.6 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 48672 ultralytics.nn.AddModules.DEYOLO.C2f_BiFocus [32, 32, True]
6 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
7 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
8 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
9 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
14 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
15 -1 1 48672 ultralytics.nn.AddModules.DEYOLO.C2f_BiFocus [32, 32, True]
16 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2]
17 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
18 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2]
19 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
20 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
21 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
22 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
23 [7, 17] 1 86900 ultralytics.nn.AddModules.DEYOLO.DEA [64, 80]
24 [9, 19] 1 320628 ultralytics.nn.AddModules.DEYOLO.DEA [128, 40]
25 [12, 22] 1 1234292 ultralytics.nn.AddModules.DEYOLO.DEA [256, 20]
26 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
27 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
29 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
30 [-1, 23] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1]
32 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
33 [-1, 28] 1 0 ultralytics.nn.modules.conv.Concat [1]
34 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
35 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
36 [-1, 25] 1 0 ultralytics.nn.modules.conv.Concat [1]
37 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
38 [31, 34, 37] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLOv8-DEYOLO summary: 538 layers, 5,687,503 parameters, 5,687,487 gradients, 15.6 GFLOPs