学习资源站

【YOLOv13多模态融合改进】(可见光加红外)涉及前期,中期,后期融合方式的完整配置步骤以及二次改进方案-

【YOLOv13多模态融合改进】(可见光+红外)涉及前期、中期、后期融合方式的完整配置步骤以及二次改进方案

前言

主题: YOLOv13的多模态融合改进

方式: 前期融合、中期融合、后期融合。

内容: 包含融合方式详解和完整的项目包和配置步骤以及二次改进建议,开箱即用,一键运行。


一、融合方式

1.1 前期融合方法及结构图

定义: 在网络输入阶段将多模态数据直接合并,形成统一的特征表示。

实现方式: 将 RGB(3 通道)与红外(3 通道)图像直接拼接为 6 通道输入,以保留原始模态的细节信息。

结构示意图:

1.2 中期融合方法及结构图

定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Add操作合并特征图,送入颈部网络。

结构示意图:

1.3 后期融合方法及结构图

定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Add操作合并特征图,送入检测头。

结构示意图:

二、完整配置步骤

!!! 获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

!!!还需要注意的是在yolov13中,融合部分只能使用 Add ,对于Add的配置可参考专栏中 CFT 模块的介绍。

2.1 前期融合

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 2-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 4-P3/8
  - [-1, 2, DSC3k2,  [512, False, 0.25]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

head:
  - [[5, 7, 9], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 10, 1, DownsampleConv, []]
  - [[7, 10], 1, FullPAD_Tunnel, []]  #13     
  - [[5, 11], 1, FullPAD_Tunnel, []]  #14    
  - [[9, 12], 1, FullPAD_Tunnel, []] #15 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 13], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 18
  - [[-1, 10], 1, FullPAD_Tunnel, []]  #19

  - [18, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 14], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 22
  - [11, 1, Conv, [256, 1, 1]]
  - [[22, 23], 1, FullPAD_Tunnel, []]  #24

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 19], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 27
  - [[-1, 10], 1, FullPAD_Tunnel, []]

  - [27, 1, Conv, [512, 3, 2]]
  - [[-1, 15], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 31 (P5/32-large)
  - [[-1, 12], 1, FullPAD_Tunnel, []]

  - [[24, 28, 32], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.2 中期融合

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

  - [[7, 16], 1, Add, [1]]  # 21 cat backbone P3
  - [[9, 18], 1, Add, [1]]  # 22 cat backbone P4
  - [[11, 20], 1, Add, [1]]  # 23 cat backbone P5

head:
  - [[21, 22, 23], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 24, 1, DownsampleConv, []]
  - [[22, 24], 1, FullPAD_Tunnel, []]  # 27     
  - [[21, 25], 1, FullPAD_Tunnel, []]  # 28    
  - [[23, 26], 1, FullPAD_Tunnel, []] # 29 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 27], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 32
  - [[-1, 24], 1, FullPAD_Tunnel, []]  # 33

  - [32, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 28], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 36
  - [25, 1, Conv, [256, 1, 1]]
  - [[36, 37], 1, FullPAD_Tunnel, []]  # 38

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 33], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 41
  - [[-1, 24], 1, FullPAD_Tunnel, []]

  - [41, 1, Conv, [512, 3, 2]]
  - [[-1, 29], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 45 (P5/32-large)
  - [[-1, 26], 1, FullPAD_Tunnel, []]

  - [[38, 42, 46], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.3 后期融合

ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov13n.yaml' will call yolov13.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024]   # Nano
  s: [0.50, 0.50, 1024]   # Small
  l: [1.00, 1.00, 512]    # Large
  x: [1.00, 1.50, 512]    # Extra Large

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, DSC3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, DSC3k2,  [512, True]]
  - [-1, 1, DSConv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, DSConv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

head:
  - [[7, 9, 11], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 21, 1, DownsampleConv, []]
  - [[9, 21], 1, FullPAD_Tunnel, []]  # 24     
  - [[7, 22], 1, FullPAD_Tunnel, []]  # 25    
  - [[11, 23], 1, FullPAD_Tunnel, []] # 26 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 24], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 29
  - [[-1, 21], 1, FullPAD_Tunnel, []]  # 30

  - [29, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 25], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 33
  - [22, 1, Conv, [256, 1, 1]]
  - [[33, 34], 1, FullPAD_Tunnel, []]  # 35

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 38
  - [[-1, 21], 1, FullPAD_Tunnel, []]

  - [38, 1, Conv, [512, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 42 (P5/32-large)
  - [[-1, 23], 1, FullPAD_Tunnel, []]

  - [[16, 18, 20], 2, HyperACE, [512, 8, True, True, 0.5, 1, "both"]]
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [ 44, 1, DownsampleConv, []]
  - [[18, 44], 1, FullPAD_Tunnel, []]  # 47     
  - [[16, 45], 1, FullPAD_Tunnel, []]  # 48    
  - [[20, 46], 1, FullPAD_Tunnel, []] # 49 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 47], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, DSC3k2, [512, True]] # 52
  - [[-1, 44], 1, FullPAD_Tunnel, []]  # 53

  - [52, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 48], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, DSC3k2, [256, True]] # 56
  - [45, 1, Conv, [256, 1, 1]]
  - [[56, 57], 1, FullPAD_Tunnel, []]  # 58

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 53], 1, Concat, [1]] # cat head P4
  - [-1, 2, DSC3k2, [512, True]] # 61
  - [[-1, 44], 1, FullPAD_Tunnel, []]

  - [61, 1, Conv, [512, 3, 2]]
  - [[-1, 49], 1, Concat, [1]] # cat head P5
  - [-1, 2, DSC3k2, [1024,True]] # 65 (P5/32-large)
  - [[-1, 46], 1, FullPAD_Tunnel, []]

  - [[35, 58], 1, Add, [1]]  # 67 cat backbone P3
  - [[39, 62], 1, Add, [1]]  # 68 cat backbone P4
  - [[43, 66], 1, Add, [1]]  # 69 cat backbone P5

  - [[67, 68, 69], 1, Detect, [nc]] # Detect(P3, P4, P5)

三、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv13-earlyfusion summary: 630 layers, 2,482,442 parameters, 2,482,426 gradients, 7.1 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  3                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
  4                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  5                  -1  1     20800  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, False, 0.25]
  6                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
  7                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
  8                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
  9                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 10           [5, 7, 9]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 12                  10  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 13             [7, 10]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 14             [5, 11]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 15             [9, 12]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 16                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 17            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 19            [-1, 10]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 20                  18  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 21            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 23                  11  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 24            [22, 23]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 25                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 26            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 28            [-1, 10]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 29                  27  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 30            [-1, 15]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 32            [-1, 12]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 33        [24, 28, 32]  1    432427  ultralytics.nn.modules.head.Detect           [9, [64, 128, 256]]
YOLOv13-earlyfusion summary: 630 layers, 2,482,442 parameters, 2,482,426 gradients, 7.1 GFLOPs

中期融合结果:

YOLOv13-mid-fusion summary: 920 layers, 3,548,498 parameters, 3,548,482 gradients, 9.9 GFLOPs

                    from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
  8                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
 17                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21             [7, 16]  1         0  ultralytics.nn.AddModules.CFT.Add            [128]
 22             [9, 18]  1         0  ultralytics.nn.AddModules.CFT.Add            [128]
 23            [11, 20]  1         0  ultralytics.nn.AddModules.CFT.Add            [256]
 24        [21, 22, 23]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26                  24  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 27            [22, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 28            [21, 25]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 29            [23, 26]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 33            [-1, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 34                  32  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 37                  25  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 38            [36, 37]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 39                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 40            [-1, 33]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 42            [-1, 24]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 43                  41  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 44            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 46            [-1, 26]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 47        [38, 42, 46]  1    432427  ultralytics.nn.modules.head.Detect           [9, [64, 128, 256]]
YOLOv13-mid-fusion summary: 920 layers, 3,548,498 parameters, 3,548,482 gradients, 9.9 GFLOPs

后期融合结果:

YOLOv13-late-fusion summary: 1,203 layers, 4,634,905 parameters, 4,634,889 gradients, 12.3 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
  8                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      5792  ultralytics.nn.modules.block.DSC3k2          [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     74368  ultralytics.nn.modules.block.DSC3k2          [64, 128, 1, True]
 17                  -1  1     17792  ultralytics.nn.modules.conv.DSConv           [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1     34432  ultralytics.nn.modules.conv.DSConv           [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21          [7, 9, 11]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23                  21  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 24             [9, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 25             [7, 22]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 26            [11, 23]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 30            [-1, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 31                  29  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 34                  22  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 35            [33, 34]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 36                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 37            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 39            [-1, 21]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 40                  38  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 41            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 43            [-1, 23]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 44        [16, 18, 20]  1    273536  ultralytics.nn.modules.block.HyperACE        [128, 128, 1, 4, True, True, 0.5, 1, 'both']
 45                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46                  44  1     33280  ultralytics.nn.modules.block.DownsampleConv  [128]
 47            [18, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 48            [16, 45]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 49            [20, 46]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 50                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 51            [-1, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 52                  -1  1    115328  ultralytics.nn.modules.block.DSC3k2          [384, 128, 1, True]
 53            [-1, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 54                  52  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 55            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 56                  -1  1     35136  ultralytics.nn.modules.block.DSC3k2          [256, 64, 1, True]
 57                  45  1      8320  ultralytics.nn.modules.conv.Conv             [128, 64, 1, 1]
 58            [56, 57]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 59                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 60            [-1, 53]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 61                  -1  1     90752  ultralytics.nn.modules.block.DSC3k2          [192, 128, 1, True]
 62            [-1, 44]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 63                  61  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 64            [-1, 49]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65                  -1  1    345344  ultralytics.nn.modules.block.DSC3k2          [384, 256, 1, True]
 66            [-1, 46]  1         1  ultralytics.nn.modules.block.FullPAD_Tunnel  []
 67            [35, 58]  1         0  ultralytics.nn.AddModules.CFT.Add            [64]
 68            [39, 62]  1         0  ultralytics.nn.AddModules.CFT.Add            [128]
 69            [43, 66]  1         0  ultralytics.nn.AddModules.CFT.Add            [256]
 70        [67, 68, 69]  1    432427  ultralytics.nn.modules.head.Detect           [9, [64, 128, 256]]
YOLOv13-late-fusion summary: 1,203 layers, 4,634,905 parameters, 4,634,889 gradients, 12.3 GFLOPs

四、二次改进方案

  1. 多模态模型的二次改进和普通模型的改进一致,主要涉及到DSC3k2、A2C2f、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。

  2. 两个骨干中均可以再次添加其它模块,需要注意的是融合的时候层数要对应上,即两层的特征图大小要一致。