【YOLOv11多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码
前言
主题: YOLOv11 的多模态融合改进中增加P6大目标检测层
方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P6多模态融合检测层。
内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。
一、YOLOv11原始模型结构介绍
YOLOv11
原始模型结构如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
二、有效特征层对应的检测头类别
2.1 P3/8 - small检测头
-
原始模型中的
P3/8特征层对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。 -
适合检测尺寸大概在
8x8到16x16像素左右的目标。
2.2 P4/16 - medium检测头
-
这个检测头对应的
P4/16特征层经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。 -
它主要用于检测中等大小的目标,尺寸范围大概在
16x16到32x32像素左右。
2.3 P5/32 - large检测头
-
P5/32是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。 -
该检测头适合检测较大尺寸的目标,一般是尺寸在
32x32像素以上的目标。
2.4 新添加针对大目标的检测头
-
新添加的检测头主要用于检测更大尺寸的目标。尺寸在
64x64像素以上的超大目标。
💡这是因为在目标检测任务中,随着目标尺寸的增大,需要更能关注到整体轮廓的特征图来有效捕捉大目标特征。
三、P6检测层的多模态融合方式
-
前期融合中,在网络输入阶段将多模态数据合并后,增加针对大目标的检测层。
-
中期融合中,在骨干网络中增加针对P6的多模态特征进行融合,以此引出大目标的检测层。
-
中-后期融合中,在颈部的FPN结构中,增加针对P6的多模态特征进行融合,以此引出大目标的检测层。
-
后期融合中,在检测头前增加P6多模态特征进行融合。
四、完整配置步骤
!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程
在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。
除了模型结构方面的改动,在yaml文件中还传入了一个通道数
ch: 6
表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。
4.1 P6前期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, MF, [64]] # 0-P1/2
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 8-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P6/64
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P5
- [-1, 2, C3k2, [768, False]] # 16
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 19
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 22 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 19], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 25 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 16], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [768, True]] # 28 (P5/32-large)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 31 (P6/64-xlarge)
- [[22, 25, 28, 31], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.2 P6中期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 12-P6/64
- [-1, 2, C3k2, [1024, True]]
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 23-P6/64
- [-1, 2, C3k2, [1024, True]]
- [[7, 18], 1, Concat, [1]] # 25 cat backbone P2
- [[9, 20], 1, Concat, [1]] # 26 cat backbone P3
- [[11, 22], 1, Concat, [1]] # 27 cat backbone P4
- [[13, 24], 1, Concat, [1]] # 28 cat backbone P5
- [-1, 1, SPPF, [1024, 5]] # 29
- [-1, 2, C2PSA, [1024]] # 30
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 27], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [768, False]] # 33
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 26], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [512, False]] # 36 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 25], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 39 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 36], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 42 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 33], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [768, False]] # 45 (P4/16-medium)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 30], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 48 (P5/32-large)
- [[39, 42, 45, 48], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.3 P6中-后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 12-P6/64
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 14
- [-1, 2, C2PSA, [1024]] # 15
- [2, 1, Conv, [64, 3, 2]] # 16-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 19-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 21-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [768, 3, 2]] # 23-P5/32
- [-1, 2, C3k2, [768, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 25-P6/64
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 27
- [-1, 2, C2PSA, [1024]] # 28
# YOLO11n head
head:
- [15, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 11], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [768, False]] # 31
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [512, False]] # 34 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 37 (P3/8-small)
- [28, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 24], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [768, False]] # 40
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 22], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [512, False]] # 43 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 46 (P3/8-small)
- [[15, 28], 1, Concat, [1]] # 47 cat backbone P2
- [[31, 40], 1, Concat, [1]] # 48 cat backbone P3
- [[34, 43], 1, Concat, [1]] # 49 cat backbone P4
- [[37, 46], 1, Concat, [1]] # 50 cat backbone P5
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 49], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 53 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 48], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [768, False]] # 56 (P4/16-medium)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 47], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 59 (P5/32-large)
- [[50, 53, 56, 59], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.4 P6后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
# YOLO11n head
head:
- [13, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [768, False]] # 27
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [512, False]] # 30 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 33 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 30], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 36 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 27], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [768, False]] # 39 (P4/16-medium)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)
- [24, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [768, False]] # 45
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 18], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [512, False]] # 48 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 16], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 51 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 48], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 54 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 45], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [768, False]] # 57 (P4/16-medium)
- [-1, 1, Conv, [768, 3, 2]]
- [[-1, 24], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 60 (P5/32-large)
- [[33, 51], 1, Concat, [1]] # cat head P2 61
- [[36, 54], 1, Concat, [1]] # cat head P3 62
- [[39, 57], 1, Concat, [1]] # cat head P4 63
- [[42, 60], 1, Concat, [1]] # cat head P5 64
- [[61, 62, 63, 64], 1, Detect, [nc]] # Detect(P3, P4, P5)
五、成功运行结果
前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。
YOLO11-early-p6 summary: 446 layers, 4,113,180 parameters, 4,113,164 gradients, 7.1 GFLOPs
from n params module arguments
0 -1 1 472 ultralytics.nn.AddModules.multimodal.MF [6, 16]
1 -1 1 2336 ultralytics.nn.modules.conv.Conv [16, 16, 3, 2]
2 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
3 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
4 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
5 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
6 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
7 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
8 -1 1 221568 ultralytics.nn.modules.conv.Conv [128, 192, 3, 2]
9 -1 1 195072 ultralytics.nn.modules.block.C3k2 [192, 192, 1, True]
10 -1 1 442880 ultralytics.nn.modules.conv.Conv [192, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 1 225312 ultralytics.nn.modules.block.C3k2 [448, 192, 1, False]
17 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
18 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
20 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
21 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
23 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
24 [-1, 19] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
26 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
27 [-1, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 1 219648 ultralytics.nn.modules.block.C3k2 [320, 192, 1, True]
29 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2]
30 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 395264 ultralytics.nn.modules.block.C3k2 [448, 256, 1, True]
32 [22, 25, 28, 31] 1 602260 ultralytics.nn.modules.head.Detect [1, [64, 128, 192, 256]]
YOLO11-early-p5 summary: 446 layers, 4,113,180 parameters, 4,113,164 gradients, 7.1 GFLOPs
中期融合结果:
YOLO11-mid-p6 summary: 569 layers, 5,898,228 parameters, 5,898,212 gradients, 9.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 221568 ultralytics.nn.modules.conv.Conv [128, 192, 3, 2]
11 -1 1 195072 ultralytics.nn.modules.block.C3k2 [192, 192, 1, True]
12 -1 1 442880 ultralytics.nn.modules.conv.Conv [192, 256, 3, 2]
13 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 221568 ultralytics.nn.modules.conv.Conv [128, 192, 3, 2]
22 -1 1 195072 ultralytics.nn.modules.block.C3k2 [192, 192, 1, True]
23 -1 1 442880 ultralytics.nn.modules.conv.Conv [192, 256, 3, 2]
24 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
25 [7, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
26 [9, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 [11, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 [13, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
29 -1 1 394240 ultralytics.nn.modules.block.SPPF [512, 256, 5]
30 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
31 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 262176 ultralytics.nn.modules.block.C3k2 [640, 192, 1, False]
34 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
35 [-1, 26] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 119488 ultralytics.nn.modules.block.C3k2 [448, 128, 1, False]
37 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
38 [-1, 25] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 40288 ultralytics.nn.modules.block.C3k2 [384, 64, 1, False]
40 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
41 [-1, 36] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
43 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
44 [-1, 33] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 -1 1 200736 ultralytics.nn.modules.block.C3k2 [320, 192, 1, False]
46 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2]
47 [-1, 30] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 1 395264 ultralytics.nn.modules.block.C3k2 [448, 256, 1, True]
49 [39, 42, 45, 48] 1 602260 ultralytics.nn.modules.head.Detect [1, [64, 128, 192, 256]]
YOLO11-mid-p6 summary: 569 layers, 5,898,228 parameters, 5,898,212 gradients, 9.3 GFLOPs
中-后期融合结果:
YOLO11-mid-to-late-p6 summary: 658 layers, 6,677,620 parameters, 6,677,604 gradients, 11.2 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 221568 ultralytics.nn.modules.conv.Conv [128, 192, 3, 2]
11 -1 1 195072 ultralytics.nn.modules.block.C3k2 [192, 192, 1, True]
12 -1 1 442880 ultralytics.nn.modules.conv.Conv [192, 256, 3, 2]
13 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
14 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
15 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
16 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
17 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
18 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
19 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
20 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
21 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
22 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
23 -1 1 221568 ultralytics.nn.modules.conv.Conv [128, 192, 3, 2]
24 -1 1 195072 ultralytics.nn.modules.block.C3k2 [192, 192, 1, True]
25 -1 1 442880 ultralytics.nn.modules.conv.Conv [192, 256, 3, 2]
26 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
27 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
28 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
29 15 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
30 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 225312 ultralytics.nn.modules.block.C3k2 [448, 192, 1, False]
32 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
33 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
34 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
35 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
36 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
37 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
38 28 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
39 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
40 -1 1 225312 ultralytics.nn.modules.block.C3k2 [448, 192, 1, False]
41 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
42 [-1, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
43 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
44 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
45 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
46 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
47 [15, 28] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 [31, 40] 1 0 ultralytics.nn.modules.conv.Concat [1]
49 [34, 43] 1 0 ultralytics.nn.modules.conv.Concat [1]
50 [37, 46] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 -1 1 73856 ultralytics.nn.modules.conv.Conv [128, 64, 3, 2]
52 [-1, 49] 1 0 ultralytics.nn.modules.conv.Concat [1]
53 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
54 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
55 [-1, 48] 1 0 ultralytics.nn.modules.conv.Concat [1]
56 -1 1 237600 ultralytics.nn.modules.block.C3k2 [512, 192, 1, False]
57 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2]
58 [-1, 47] 1 0 ultralytics.nn.modules.conv.Concat [1]
59 -1 1 460800 ultralytics.nn.modules.block.C3k2 [704, 256, 1, True]
60 [50, 53, 56, 59] 1 742228 ultralytics.nn.modules.head.Detect [1, [128, 128, 192, 256]]
YOLO11-mid-to-late-p6 summary: 658 layers, 6,677,620 parameters, 6,677,604 gradients, 11.2 GFLOPs
后期融合结果:
YOLO11-late-p6 summary: 661 layers, 6,972,436 parameters, 6,972,420 gradients, 32.1 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 13 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 213024 ultralytics.nn.modules.block.C3k2 [384, 192, 1, False]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
31 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 28000 ultralytics.nn.modules.block.C3k2 [192, 64, 1, False]
34 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
35 [-1, 30] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
37 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
38 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 200736 ultralytics.nn.modules.block.C3k2 [320, 192, 1, False]
40 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2]
41 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 395264 ultralytics.nn.modules.block.C3k2 [448, 256, 1, True]
43 24 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
44 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 -1 1 213024 ultralytics.nn.modules.block.C3k2 [384, 192, 1, False]
46 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
47 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
49 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
50 [-1, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 -1 1 28000 ultralytics.nn.modules.block.C3k2 [192, 64, 1, False]
52 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
53 [-1, 48] 1 0 ultralytics.nn.modules.conv.Concat [1]
54 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
55 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
56 [-1, 45] 1 0 ultralytics.nn.modules.conv.Concat [1]
57 -1 1 200736 ultralytics.nn.modules.block.C3k2 [320, 192, 1, False]
58 -1 1 332160 ultralytics.nn.modules.conv.Conv [192, 192, 3, 2]
59 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
60 -1 1 395264 ultralytics.nn.modules.block.C3k2 [448, 256, 1, True]
61 [33, 51] 1 0 ultralytics.nn.modules.conv.Concat [1]
62 [36, 54] 1 0 ultralytics.nn.modules.conv.Concat [1]
63 [39, 57] 1 0 ultralytics.nn.modules.conv.Concat [1]
64 [42, 60] 1 0 ultralytics.nn.modules.conv.Concat [1]
65 [61, 62, 63, 64] 1 1154068 ultralytics.nn.modules.head.Detect [1, [128, 256, 384, 512]]
YOLO11-late-p6 summary: 661 layers, 6,972,436 parameters, 6,972,420 gradients, 32.1 GFLOPs