学习资源站

【YOLOv11多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P6大目标检测层,完整步骤及代码_yolo中期融合-

【YOLOv11多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码

前言

主题: YOLOv11 的多模态融合改进中增加P6大目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P6多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv11原始模型结构介绍

YOLOv11 原始模型结构如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 16x16 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 16x16 32x32 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 32x32 像素以上的目标。

2.4 新添加针对大目标的检测头

  • 新添加的检测头主要用于检测更大尺寸的目标。尺寸在 64x64 像素以上的超大目标。

💡这是因为在目标检测任务中,随着目标尺寸的增大,需要更能关注到整体轮廓的特征图来有效捕捉大目标特征。

三、P6检测层的多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对大目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  4. 后期融合中,在检测头前增加P6多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P6前期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0-P1/2
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]] # 8-P5/32
  - [-1, 2, C3k2, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 10-P6/64
  - [-1, 2, C3k2, [1024, True]]

  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 2, C2PSA, [1024]] # 13

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P5
  - [-1, 2, C3k2, [768, False]] # 16

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 19

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 22 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 19], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 25 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 16], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [768, True]] # 28 (P5/32-large)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 31 (P6/64-xlarge)

  - [[22, 25, 28, 31], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.2 P6中期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]] # 10-P5/32
  - [-1, 2, C3k2, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 12-P6/64
  - [-1, 2, C3k2, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]] # 21-P5/32
  - [-1, 2, C3k2, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 23-P6/64
  - [-1, 2, C3k2, [1024, True]]

  - [[7, 18], 1, Concat, [1]]  # 25 cat backbone P2
  - [[9, 20], 1, Concat, [1]]  # 26 cat backbone P3
  - [[11, 22], 1, Concat, [1]]  # 27 cat backbone P4
  - [[13, 24], 1, Concat, [1]]  # 28 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 29
  - [-1, 2, C2PSA, [1024]] # 30

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 27], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [768, False]] # 33

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 26], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [512, False]] # 36 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 25], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 39 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 36], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 42 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 33], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [768, False]] # 45 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 48 (P5/32-large)

  - [[39, 42, 45, 48], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.3 P6中-后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]] # 10-P5/32
  - [-1, 2, C3k2, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 12-P6/64
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 14
  - [-1, 2, C2PSA, [1024]] # 15

  - [2, 1, Conv, [64, 3, 2]] # 16-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 17-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 19-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 21-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [768, 3, 2]] # 23-P5/32
  - [-1, 2, C3k2, [768, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 25-P6/64
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 27
  - [-1, 2, C2PSA, [1024]] # 28

# YOLO11n head
head:
  - [15, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 11], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [768, False]] # 31

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [512, False]] # 34 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 37 (P3/8-small)

  - [28, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 24], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [768, False]] # 40

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [512, False]] # 43 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 46 (P3/8-small)

  - [[15, 28], 1, Concat, [1]]  # 47 cat backbone P2
  - [[31, 40], 1, Concat, [1]]  # 48 cat backbone P3
  - [[34, 43], 1, Concat, [1]]  # 49 cat backbone P4
  - [[37, 46], 1, Concat, [1]]  # 50 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 49], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 53 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 48], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [768, False]] # 56 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 47], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 59 (P5/32-large)

  - [[50, 53, 56, 59], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.4 P6后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 2, C2PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 2, C2PSA, [1024]] # 24

# YOLO11n head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [768, False]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [512, False]] # 30 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 33 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 36 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [768, False]] # 39 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [768, False]] # 45

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [512, False]] # 48 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 51 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 48], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 54 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 45], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [768, False]] # 57 (P4/16-medium)

  - [-1, 1, Conv, [768, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 60 (P5/32-large)

  - [[33, 51], 1, Concat, [1]]  # cat head P2  61
  - [[36, 54], 1, Concat, [1]]  # cat head P3  62
  - [[39, 57], 1, Concat, [1]]  # cat head P4  63
  - [[42, 60], 1, Concat, [1]]  # cat head P5  64

  - [[61, 62, 63, 64], 1, Detect, [nc]] # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLO11-early-p6 summary: 446 layers, 4,113,180 parameters, 4,113,164 gradients, 7.1 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
  8                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
  9                  -1  1    195072  ultralytics.nn.modules.block.C3k2            [192, 192, 1, True]
 10                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 11                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 15             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 16                  -1  1    225312  ultralytics.nn.modules.block.C3k2            [448, 192, 1, False]
 17                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 18             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 20                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 21             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 23                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 24            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 26                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 27            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1    219648  ultralytics.nn.modules.block.C3k2            [320, 192, 1, True]
 29                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 30            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1    395264  ultralytics.nn.modules.block.C3k2            [448, 256, 1, True]
 32    [22, 25, 28, 31]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLO11-early-p5 summary: 446 layers, 4,113,180 parameters, 4,113,164 gradients, 7.1 GFLOPs

中期融合结果:

YOLO11-mid-p6 summary: 569 layers, 5,898,228 parameters, 5,898,212 gradients, 9.3 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  1    195072  ultralytics.nn.modules.block.C3k2            [192, 192, 1, True]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 21                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 22                  -1  1    195072  ultralytics.nn.modules.block.C3k2            [192, 192, 1, True]
 23                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 24                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 25             [7, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26             [9, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27            [11, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28            [13, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 30                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1    262176  ultralytics.nn.modules.block.C3k2            [640, 192, 1, False]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1    119488  ultralytics.nn.modules.block.C3k2            [448, 128, 1, False]
 37                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 38            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1     40288  ultralytics.nn.modules.block.C3k2            [384, 64, 1, False]
 40                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 41            [-1, 36]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 43                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 44            [-1, 33]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    200736  ultralytics.nn.modules.block.C3k2            [320, 192, 1, False]
 46                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 47            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1    395264  ultralytics.nn.modules.block.C3k2            [448, 256, 1, True]
 49    [39, 42, 45, 48]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLO11-mid-p6 summary: 569 layers, 5,898,228 parameters, 5,898,212 gradients, 9.3 GFLOPs

中-后期融合结果:

YOLO11-mid-to-late-p6 summary: 658 layers, 6,677,620 parameters, 6,677,604 gradients, 11.2 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  1    195072  ultralytics.nn.modules.block.C3k2            [192, 192, 1, True]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 14                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 15                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 16                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 17                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 18                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 19                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 20                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 21                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 22                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 23                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 24                  -1  1    195072  ultralytics.nn.modules.block.C3k2            [192, 192, 1, True]
 25                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 26                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 27                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 28                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 29                  15  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1    225312  ultralytics.nn.modules.block.C3k2            [448, 192, 1, False]
 32                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 33             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 35                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 36             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 38                  28  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 39            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1    225312  ultralytics.nn.modules.block.C3k2            [448, 192, 1, False]
 41                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 42            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 44                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 45            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]
 47            [15, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48            [31, 40]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49            [34, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 50            [37, 46]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 52            [-1, 49]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 53                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 54                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 55            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 56                  -1  1    237600  ultralytics.nn.modules.block.C3k2            [512, 192, 1, False]
 57                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 58            [-1, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 59                  -1  1    460800  ultralytics.nn.modules.block.C3k2            [704, 256, 1, True]
 60    [50, 53, 56, 59]  1    742228  ultralytics.nn.modules.head.Detect           [1, [128, 128, 192, 256]]
YOLO11-mid-to-late-p6 summary: 658 layers, 6,677,620 parameters, 6,677,604 gradients, 11.2 GFLOPs

后期融合结果:

YOLO11-late-p6 summary: 661 layers, 6,972,436 parameters, 6,972,420 gradients, 32.1 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 18                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]
 21                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 22                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    213024  ultralytics.nn.modules.block.C3k2            [384, 192, 1, False]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     28000  ultralytics.nn.modules.block.C3k2            [192, 64, 1, False]
 34                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 35            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 37                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 38            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1    200736  ultralytics.nn.modules.block.C3k2            [320, 192, 1, False]
 40                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 41            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    395264  ultralytics.nn.modules.block.C3k2            [448, 256, 1, True]
 43                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 44            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    213024  ultralytics.nn.modules.block.C3k2            [384, 192, 1, False]
 46                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 47            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1    103104  ultralytics.nn.modules.block.C3k2            [320, 128, 1, False]
 49                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 50            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1     28000  ultralytics.nn.modules.block.C3k2            [192, 64, 1, False]
 52                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 53            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]
 55                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 56            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 57                  -1  1    200736  ultralytics.nn.modules.block.C3k2            [320, 192, 1, False]
 58                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]
 59            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60                  -1  1    395264  ultralytics.nn.modules.block.C3k2            [448, 256, 1, True]
 61            [33, 51]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 62            [36, 54]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 63            [39, 57]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 64            [42, 60]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65    [61, 62, 63, 64]  1   1154068  ultralytics.nn.modules.head.Detect           [1, [128, 256, 384, 512]]
YOLO11-late-p6 summary: 661 layers, 6,972,436 parameters, 6,972,420 gradients, 32.1 GFLOPs