【YOLOv11多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码
前言
主题: YOLOv11 的多模态融合改进中增加P2小目标检测层
方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。
内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。
一、YOLOv11原始模型结构介绍
YOLOv11
原始模型结构如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
- [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 13
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
二、有效特征层对应的检测头类别
2.1 P3/8 - small检测头
-
原始模型中的
P3/8特征层对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。 -
适合检测尺寸大概在
8x8到32x32像素左右的目标。
2.2 P4/16 - medium检测头
-
这个检测头对应的
P4/16特征层经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。 -
它主要用于检测中等大小的目标,尺寸范围大概在
32x32到64x64像素左右。
2.3 P5/32 - large检测头
-
P5/32是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。 -
该检测头适合检测较大尺寸的目标,一般是尺寸在
64x64像素以上的目标。
2.4 新添加针对小目标的检测头
-
新添加的检测头主要用于检测更小尺寸的目标。尺寸在
4x4到8x8像素左右的微小目标。
💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。
三、小目标检测头多模态融合方式
-
前期融合中,在网络输入阶段将多模态数据合并后,增加针对小目标的检测层。
-
中期融合中,在骨干网络中增加针对P2的多模态特征进行融合,以此引出小目标的检测层。
-
中-后期融合中,在颈部的FPN结构中,增加针对P2的多模态特征进行融合,以此引出小目标的检测层。
-
后期融合中,在检测头前增加P2多模态特征进行融合。
四、完整配置步骤
!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程
在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。
除了模型结构方面的改动,在yaml文件中还传入了一个通道数
ch: 6
表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。
4.1 P2前期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, MF, [64]] # 0-P1/2
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 10
- [-1, 2, C2PSA, [1024]] # 11
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 3], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 20 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 17], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 23 (P4/16-medium)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 26 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 29 (P5/32-large)
- [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.2 P2中期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [2, 1, Conv, [64, 3, 2]] # 12-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
- [-1, 2, C3k2, [1024, True]]
- [[5, 14], 1, Concat, [1]] # 21 cat backbone P2
- [[7, 16], 1, Concat, [1]] # 22 cat backbone P3
- [[9, 18], 1, Concat, [1]] # 23 cat backbone P4
- [[11, 20], 1, Concat, [1]] # 24 cat backbone P5
- [-1, 1, SPPF, [1024, 5]] # 25
- [-1, 2, C2PSA, [1024]] # 26
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 23], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 29
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 22], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 32
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 21], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [128, False]] # 35 (P2/4-xsmall)
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 32], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [256, False]] # 38 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 29], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 41 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 26], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 44 (P5/32-large)
- [[35, 38, 41, 44], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.3 P2中-后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
# YOLO11n head
head:
- [13, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 27
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 30
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [128, False]] # 33 (P2/4-xsmall)
- [24, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 36
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 18], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 39
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 16], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [128, False]] # 42 (P2/4-xsmall)
- [[13, 24], 1, Concat, [1]] # 43 cat backbone P2
- [[27, 36], 1, Concat, [1]] # 44 cat backbone P3
- [[30, 39], 1, Concat, [1]] # 45 cat backbone P4
- [[33, 42], 1, Concat, [1]] # 46 cat backbone P5
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 45], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [256, False]] # 49 (P4/16-medium)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 44], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 52 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 43], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 55 (P5/32-large)
- [[46, 49, 52, 55], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.4 P2后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
# YOLO11n head
head:
- [13, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 27
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 30
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [128, False]] # 33 (P2/4-xsmall)
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 30], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [256, False]] # 36 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 27], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 39 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)
- [24, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 45
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 18], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 48
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 16], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [128, False]] # 51 (P2/4-xsmall)
- [-1, 1, Conv, [128, 3, 2]]
- [[-1, 48], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [256, False]] # 54 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 45], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 57 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 24], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 60 (P5/32-large)
- [[33, 51], 1, Concat, [1]] # cat head P2 61
- [[36, 54], 1, Concat, [1]] # cat head P3 62
- [[39, 57], 1, Concat, [1]] # cat head P4 63
- [[42, 60], 1, Concat, [1]] # cat head P5 64
- [[61, 62, 63, 64], 1, Detect, [nc]] # Detect(P3, P4, P5)
五、成功运行结果
前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。
YOLO11-early-p2 summary: 392 layers, 2,898,396 parameters, 2,898,380 gradients, 15.1 GFLOPs
from n params module arguments
0 -1 1 472 ultralytics.nn.AddModules.multimodal.MF [6, 16]
1 -1 1 2336 ultralytics.nn.modules.conv.Conv [16, 16, 3, 2]
2 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
3 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
4 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
5 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
6 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
7 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
8 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
9 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
11 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
13 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
14 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 [-1, 3] 1 0 ultralytics.nn.modules.conv.Concat [1]
20 -1 1 23904 ultralytics.nn.modules.block.C3k2 [128, 64, 1, False]
21 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
22 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
23 -1 1 78528 ultralytics.nn.modules.block.C3k2 [128, 128, 1, False]
24 -1 1 73856 ultralytics.nn.modules.conv.Conv [128, 64, 3, 2]
25 [-1, 14] 1 0 ultralytics.nn.modules.conv.Concat [1]
26 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
27 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
28 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1]
29 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
30 [20, 23, 26, 29] 1 560596 ultralytics.nn.modules.head.Detect [1, [64, 128, 128, 256]]
YOLO11-early-p2 summary: 392 layers, 2,898,396 parameters, 2,898,380 gradients, 15.1 GFLOPs
中期融合结果:
YOLO11-mid-p2 summary: 497 layers, 3,874,212 parameters, 3,874,196 gradients, 13.6 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
13 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
14 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
15 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
16 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
17 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
18 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
19 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
20 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
21 [5, 14] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 [7, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
23 [9, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 [11, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 1 394240 ultralytics.nn.modules.block.SPPF [512, 256, 5]
26 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
27 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
28 [-1, 23] 1 0 ultralytics.nn.modules.conv.Concat [1]
29 -1 1 127680 ultralytics.nn.modules.block.C3k2 [512, 128, 1, False]
30 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
31 [-1, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
32 -1 1 40288 ultralytics.nn.modules.block.C3k2 [384, 64, 1, False]
33 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
34 [-1, 21] 1 0 ultralytics.nn.modules.conv.Concat [1]
35 -1 1 10160 ultralytics.nn.modules.block.C3k2 [192, 32, 1, False]
36 -1 1 9280 ultralytics.nn.modules.conv.Conv [32, 32, 3, 2]
37 [-1, 32] 1 0 ultralytics.nn.modules.conv.Concat [1]
38 -1 1 21856 ultralytics.nn.modules.block.C3k2 [96, 64, 1, False]
39 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
40 [-1, 29] 1 0 ultralytics.nn.modules.conv.Concat [1]
41 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
42 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
43 [-1, 26] 1 0 ultralytics.nn.modules.conv.Concat [1]
44 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
45 [35, 38, 41, 44] 1 468404 ultralytics.nn.modules.head.Detect [1, [32, 64, 128, 256]]
YOLO11-mid-p2 summary: 497 layers, 3,874,212 parameters, 3,874,196 gradients, 13.6 GFLOPs
中-后期融合结果:
YOLO11-mid-to-late-p2 summary: 586 layers, 4,329,556 parameters, 4,329,540 gradients, 16.4 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 13 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
31 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 8112 ultralytics.nn.modules.block.C3k2 [128, 32, 1, False]
34 24 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
35 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
37 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
38 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
40 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
41 [-1, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 8112 ultralytics.nn.modules.block.C3k2 [128, 32, 1, False]
43 [13, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
44 [27, 36] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 [30, 39] 1 0 ultralytics.nn.modules.conv.Concat [1]
46 [33, 42] 1 0 ultralytics.nn.modules.conv.Concat [1]
47 -1 1 18496 ultralytics.nn.modules.conv.Conv [64, 32, 3, 2]
48 [-1, 45] 1 0 ultralytics.nn.modules.conv.Concat [1]
49 -1 1 25952 ultralytics.nn.modules.block.C3k2 [160, 64, 1, False]
50 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
51 [-1, 44] 1 0 ultralytics.nn.modules.conv.Concat [1]
52 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
53 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
54 [-1, 43] 1 0 ultralytics.nn.modules.conv.Concat [1]
55 -1 1 444416 ultralytics.nn.modules.block.C3k2 [640, 256, 1, True]
56 [46, 49, 52, 55] 1 518932 ultralytics.nn.modules.head.Detect [1, [64, 64, 128, 256]]
YOLO11-mid-to-late-p2 summary: 586 layers, 4,329,556 parameters, 4,329,540 gradients, 16.4 GFLOPs
后期融合结果:
YOLO11-late-p2 summary: 661 layers, 5,207,412 parameters, 5,207,396 gradients, 18.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 13 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
31 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 8112 ultralytics.nn.modules.block.C3k2 [128, 32, 1, False]
34 -1 1 9280 ultralytics.nn.modules.conv.Conv [32, 32, 3, 2]
35 [-1, 30] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 21856 ultralytics.nn.modules.block.C3k2 [96, 64, 1, False]
37 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
38 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
40 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
41 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
43 24 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
44 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
46 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
47 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
49 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
50 [-1, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 -1 1 8112 ultralytics.nn.modules.block.C3k2 [128, 32, 1, False]
52 -1 1 9280 ultralytics.nn.modules.conv.Conv [32, 32, 3, 2]
53 [-1, 48] 1 0 ultralytics.nn.modules.conv.Concat [1]
54 -1 1 21856 ultralytics.nn.modules.block.C3k2 [96, 64, 1, False]
55 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
56 [-1, 45] 1 0 ultralytics.nn.modules.conv.Concat [1]
57 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
58 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
59 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
60 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
61 [33, 51] 1 0 ultralytics.nn.modules.conv.Concat [1]
62 [36, 54] 1 0 ultralytics.nn.modules.conv.Concat [1]
63 [39, 57] 1 0 ultralytics.nn.modules.conv.Concat [1]
64 [42, 60] 1 0 ultralytics.nn.modules.conv.Concat [1]
65 [61, 62, 63, 64] 1 810580 ultralytics.nn.modules.head.Detect [1, [64, 128, 256, 512]]
YOLO11-late-p2 summary: 661 layers, 5,207,412 parameters, 5,207,396 gradients, 18.3 GFLOPs