学习资源站

【YOLOv12多模态融合改进】(可见光加红外)涉及前期,中期,中后期,后期融合方式的完整配置步骤以及二次改进方案_yolov12改进-

【YOLOv12多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案

前言

主题: YOLOv12的多模态融合改进

方式: 前期融合、中期融合、中-后期融合、后期融合。

内容: 包含融合方式详解和完整的项目包和配置步骤以及二次改进建议,开箱即用,一键运行。


一、融合方式

1.1 前期融合方法及结构图

定义: 在网络输入阶段将多模态数据直接合并,形成统一的特征表示。

实现方式: 将 RGB(3 通道)与红外(3 通道)图像直接拼接为 6 通道输入,以保留原始模态的细节信息。

结构示意图:

1.2 中期融合方法及结构图

定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Concat操作合并特征图,送入颈部网络。

结构示意图:

1.3 中-后期融合方法及结构图

定义: 在颈部网络的上采样之后对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部的FPN网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

1.4 后期融合方法及结构图

定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

二、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

2.1 前期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 15

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 18

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.2 中期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

  - [[7, 16], 1, Concat, [1]]  # 21 cat backbone P3
  - [[9, 18], 1, Concat, [1]]  # 22 cat backbone P4
  - [[11, 20], 1, Concat, [1]]  # 23 cat backbone P5

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 26

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 21], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 29

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 32

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 23], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 35 (P5/32-large)

  - [[29, 32, 35], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.3 中-后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

# YOLO12 head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 23

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 26

  - [20, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 29

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 32

  - [[11, 20], 1, Concat, [1]]  # cat head P5  33
  - [[23, 29], 1, Concat, [1]]  # cat head P5  34
  - [[26, 32], 1, Concat, [1]]  # cat head P5  35

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 34], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 38

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 33], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 41 (P5/32-large)

  - [[35, 38, 41], 1, Detect, [nc]] # Detect(P3, P4, P5)

2.4 后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

# YOLO12 head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 23

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 26

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 23], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 29

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 32 (P5/32-large)

  - [20, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 35

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 38

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 35], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 41

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 20], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 44 (P5/32-large)

  - [[26, 38], 1, Concat, [1]]  # cat head P5  45
  - [[29, 41], 1, Concat, [1]]  # cat head P5  46
  - [[32, 44], 1, Concat, [1]]  # cat head P5  47

  - [[45, 46, 47], 1, Detect, [nc]] # Detect(P3, P4, P5)

三、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv12-earlyfusion summary: 479 layers, 2,540,635 parameters, 2,540,619 gradients, 6.8 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 22        [15, 18, 21]  1    430867  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
YOLOv12-earlyfusion summary: 479 layers, 2,540,635 parameters, 2,540,619 gradients, 6.8 GFLOPs

中期融合结果:

YOLOv12-midfusion summary: 713 layers, 3,990,803 parameters, 3,990,787 gradients, 9.1 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1    111488  ultralytics.nn.AddModules.A2C2f.A2C2f        [768, 128, 1, False, -1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     28096  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 64, 1, False, -1]
 30                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 31            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 33                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 34            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 36        [29, 32, 35]  1    430867  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
YOLOv12-midfusion summary: 713 layers, 3,990,803 parameters, 3,990,787 gradients, 9.1 GFLOPs

中-后期融合结果:

YOLOv12-mid-to-late-fusion summary: 783 layers, 4,232,467 parameters, 4,232,451 gradients, 10.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 27                  20  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 33            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34            [23, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35            [26, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 37            [-1, 34]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 39                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 40            [-1, 33]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 42        [35, 38, 41]  1    545235  ultralytics.nn.modules.head.Detect           [1, [128, 128, 256]]
YOLOv12-mid-to-late-fusion summary: 783 layers, 4,232,467 parameters, 4,232,451 gradients, 10.6 GFLOPs

后期融合结果:

YOLOv12-latefusion summary: 857 layers, 5,034,643 parameters, 5,034,627 gradients, 11.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 27                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 28            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 30                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 31            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 33                  20  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 36                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 37            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 39                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 40            [-1, 35]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 42                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 43            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 45            [26, 38]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46            [29, 41]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47            [32, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48        [45, 46, 47]  1    819795  ultralytics.nn.modules.head.Detect           [1, [128, 256, 512]]
YOLOv12-latefusion summary: 857 layers, 5,034,643 parameters, 5,034,627 gradients, 11.6 GFLOPs

四、二次改进方案

  1. 多模态模型的二次改进和普通模型的改进一致,主要涉及到A2C2f、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。若有需要可查看主页的模块改进专栏。

  2. 两个骨干中均可以再次添加其它模块,需要注意的是融合的时候层数要对应上,即两层的特征图大小要一致。