学习资源站

【YOLOv10多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P2小目标检测层,完整步骤及代码_基于p2特征增强的yolov10改进模型-

【YOLOv10多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码

前言

主题: YOLOv10 的多模态融合改进中增加P2小目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv10原始模型结构介绍

YOLOv10 原始模型结构如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 32x32 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 32x32 64x64 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 64x64像素以上 的目标。

2.4 新添加针对小目标的检测头

  • 新添加的检测头主要用于检测更小尺寸的目标。尺寸在 4x4 8x8 像素左右的微小目标。

💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。

三、小目标检测头多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对小目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  4. 后期融合中,在检测头前增加P2多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P2前期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 6-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 8-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 10
  - [-1, 1, PSA, [1024]] # 11

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 14

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 17 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [128]] # 20 (P3/8-small)

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 17], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [256]] # 23 (P4/16-medium)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 26 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 29 (P5/32-large)

  - [[20, 23, 26, 29], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

4.2 P2中期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 17-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 19-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [[5, 14], 1, Concat, [1]]  # 21 cat backbone P2
  - [[7, 16], 1, Concat, [1]]  # 22 cat backbone P3
  - [[9, 18], 1, Concat, [1]]  # 23 cat backbone P4
  - [[11, 20], 1, Concat, [1]]  # 24 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 25
  - [-1, 1, PSA, [1024]] # 26

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 23], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 29

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 32 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 21], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 35 (P2/4-xsmall)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 32], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 38 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 29], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 41 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 44 (P5/32-large)

  - [[35, 38, 41, 44], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

4.3 P2中-后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 1, PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 21-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 1, PSA, [1024]] # 24

# YOLOv10.0n head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 30 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [128]] # 33 (P3/8-small)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 36

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 39 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [128]] # 42 (P3/8-small)

  - [[13, 24], 1, Concat, [1]]  # 43 cat backbone P2
  - [[27, 36], 1, Concat, [1]]  # 44 cat backbone P3
  - [[30, 39], 1, Concat, [1]]  # 45 cat backbone P4
  - [[33, 42], 1, Concat, [1]]  # 46 cat backbone P5

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 45], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [256]] # 49 (P4/16-medium)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 44], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 52 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 43], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 55 (P5/32-large)

  - [[46, 49, 52, 55], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

4.4 P2后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 1, PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 21-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 1, PSA, [1024]] # 24

# YOLOv10.0n head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 30 

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [128]] # 33 (P2/4-xsmall)

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [256]] # 36 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 39 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 42 (P5/32-large)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 45

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 48

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 51 (P2/4-xsmall)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 48], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 54 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 45], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 57 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 60 (P5/32-large)

  - [[33, 51], 1, Concat, [1]]  # 61 cat backbone P2
  - [[36, 54], 1, Concat, [1]]  # 62 cat backbone P3
  - [[39, 57], 1, Concat, [1]]  # 63 cat backbone P4
  - [[42, 60], 1, Concat, [1]]  # 64 cat backbone P5

  - [[61, 62, 63, 64], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv10n-early-p2 summary: 482 layers, 2,834,640 parameters, 2,834,624 gradients, 16.4 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  4                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  5                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  6                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  7                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  8                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
  9                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 10                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 11                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 13             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 14                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 16             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 17                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 19             [-1, 3]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 20                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 21                  -1  1      9280  ultralytics.nn.modules.conv.Conv             [32, 32, 3, 2]
 22            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 24                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 25            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 27                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 28            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 30    [20, 23, 26, 29]  1    936792  ultralytics.nn.modules.head.v10Detect        [1, [32, 64, 128, 256]]
YOLOv10n-early-p2 summary: 482 layers, 2,834,640 parameters, 2,834,624 gradients, 16.4 GFLOPs

中期融合结果:

YOLOv10n-mid-p2 summary: 575 layers, 4,224,056 parameters, 4,224,040 gradients, 25.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 15                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 16                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 17                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 18                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 19                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 20                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 21             [5, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 26                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    164608  ultralytics.nn.modules.block.C2f             [512, 128, 1]
 30                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     41344  ultralytics.nn.modules.block.C2f             [256, 64, 1]
 33                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     33152  ultralytics.nn.modules.block.C2f             [128, 64, 1]
 36                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 37            [-1, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1    115456  ultralytics.nn.modules.block.C2f             [128, 128, 1]
 39                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 40            [-1, 29]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 42                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 43            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 45    [35, 38, 41, 44]  1   1121176  ultralytics.nn.modules.head.v10Detect        [1, [64, 128, 128, 256]]
YOLOv10n-mid-p2 summary: 575 layers, 4,224,056 parameters, 4,224,040 gradients, 25.5 GFLOPs

中-后期融合结果:

YOLOv10n-mid-to-late-p2 summary: 662 layers, 4,422,392 parameters, 4,422,376 gradients, 23.4 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 22                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 34                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 37                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 38            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 40                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 41            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 43            [13, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44            [27, 36]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45            [30, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46            [33, 42]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1     18496  ultralytics.nn.modules.conv.Conv             [64, 32, 3, 2]
 48            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49                  -1  1     35200  ultralytics.nn.modules.block.C2f             [160, 64, 1]
 50                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 51            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 52                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 53                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 54            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 55                  -1  1    348160  ultralytics.nn.modules.block.C2fCIB          [640, 256, 1, True, True]
 56    [46, 49, 52, 55]  1   1037848  ultralytics.nn.modules.head.v10Detect        [1, [64, 64, 128, 256]]
YOLOv10n-mid-to-late-p2 summary: 662 layers, 4,422,392 parameters, 4,422,376 gradients, 23.4 GFLOPs

后期融合结果:

YOLOv10n-late-p2 summary: 741 layers, 5,820,408 parameters, 5,820,392 gradients, 33.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 22                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 34                  -1  1      9280  ultralytics.nn.modules.conv.Conv             [32, 32, 3, 2]
 35            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 37                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 38            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 40                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 41            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 43                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 44            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 46                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 47            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 49                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 50            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 52                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 53            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  1    115456  ultralytics.nn.modules.block.C2f             [128, 128, 1]
 55                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 56            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 57                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 58                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 59            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 61            [33, 51]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 62            [36, 54]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 63            [39, 57]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 64            [42, 60]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65    [61, 62, 63, 64]  1   1858776  ultralytics.nn.modules.head.v10Detect        [1, [96, 192, 256, 512]]
YOLOv10n-late-p2 summary: 741 layers, 5,820,408 parameters, 5,820,392 gradients, 33.6 GFLOPs