学习资源站

YOLOv8独家改进:backbone改进 _ 轻量化之王MobileNetV4 开源 _ Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!_mobilenetv4的创新点

💡💡💡创新点:轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!

MobileNetV4(MNv4),其特点是针对移动设备设计的通用高效架构。创新1):引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体;创新2):一种优化的神经结构搜索(NAS)配方,提高了MNv4的搜索效率;创新3):为了进一步提升准确度,引入了一种新颖的蒸馏技术。

 💡💡💡如何跟YOLOv8结合:替代YOLOv8的backbone

 

收录

YOLOv8原创自研

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

1.原理介绍

论文: https://arxiv.org/pdf/2404.10518

摘要:我们介绍了最新一代的mobilenet,被称为MobileNetV4 (MNv4),具有普遍有效的移动设备架构设计。在其核心,我们引入了通用倒瓶颈(UIB)搜索块,这是一个统一而灵活的结构,它融合了倒瓶颈(IB), ConvNext,前馈网络(FFN)和一个新的Extra depth(引渡)变体。除了UIB之外,我们还推出了Mobile MQA,这是一款专为移动加速器量身定制的注意力块,可显著提高39%的速度。介绍了一种优化的神经结构搜索(NAS)配方,提高了MNv4的搜索效率。UIB, Mobile MQA和精致的NAS配方的集成产生了一套新的MNv4模型,这些模型在移动cpu, dsp, gpu以及专用加速器(如Apple Neural Engine和Google Pixel EdgeTPU)上大多是最优的,这是任何其他模型测试中没有发现的特征。最后,为了进一步提高精度,我们介绍了一种新的蒸馏技术。通过这种技术的增强,我们的MNv4-Hybrid-Large模型提供了87%的ImageNet-1K精度,Pixel 8 EdgeTPU运行时间仅为3.8ms。 

2. mobilenetv4加入YOLOv8

2.1 新建ultralytics/nn/backbone/mobilenetv4.py

from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union

import torch
import torch.nn as nn

__all__ = ['MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4ConvLarge', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge']

MNV4ConvSmall_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 32, 3, 2],
            [32, 32, 1, 1]
        ]
    },
    "layer2": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 96, 3, 2],
            [96, 64, 1, 1]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [64, 96, 5, 5, True, 2, 3],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 3, 0, True, 1, 4],
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [96,  128, 3, 3, True, 2, 6],
            [128, 128, 5, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 3],
            [128, 128, 0, 3, True, 1, 4],
            [128, 128, 0, 3, True, 1, 4],
        ]
    },  
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [128, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4ConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 0, True, 1, 4],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 3, 0, True, 1, 4],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 5, 0, True, 1, 2]
        ]
    },  
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4ConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 13,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },  
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}

MNV4HybridConvMedium_BLOCK_SPECS = {

}

MNV4HybridConvLarge_BLOCK_SPECS = {

}

MODEL_SPECS = {
    "MobileNetV4ConvSmall": MNV4ConvSmall_BLOCK_SPECS,
    "MobileNetV4ConvMedium": MNV4ConvMedium_BLOCK_SPECS,
    "MobileNetV4ConvLarge": MNV4ConvLarge_BLOCK_SPECS,
    "MobileNetV4HybridMedium": MNV4HybridConvMedium_BLOCK_SPECS,
    "MobileNetV4HybridLarge": MNV4HybridConvLarge_BLOCK_SPECS,
}

def make_divisible(
        value: float,
        divisor: int,
        min_value: Optional[float] = None,
        round_down_protect: bool = True,
    ) -> int:
    """
    This function is copied from here 
    "https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"
    
    This is to ensure that all layers have channels that are divisible by 8.

    Args:
        value: A `float` of original value.
        divisor: An `int` of the divisor that need to be checked upon.
        min_value: A `float` of  minimum value threshold.
        round_down_protect: A `bool` indicating whether round down more than 10%
        will be allowed.

    Returns:
        The adjusted value in `int` that is divisible against divisor.
    """
    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if round_down_protect and new_value < 0.9 * value:
        new_value += divisor
    return int(new_value)

def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
    conv = nn.Sequential()
    padding = (kernel_size - 1) // 2
    conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
    if norm:
        conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))
    if act:
        conv.add_module('Activation', nn.ReLU6())
    return conv

class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio, act=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]
        hidden_dim = int(round(inp * expand_ratio))
        self.block = nn.Sequential()
        if expand_ratio != 1:
            self.block.add_module('exp_1x1', conv_2d(inp, hidden_dim, kernel_size=1, stride=1))
        self.block.add_module('conv_3x3', conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
        self.block.add_module('red_1x1', conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
        self.use_res_connect = self.stride == 1 and inp == oup

    def forward(self, x):
        if self.use_res_connect:
            return x + self.block(x)
        else:
            return self.block(x)

class UniversalInvertedBottleneckBlock(nn.Module):
    def __init__(self, 
            inp, 
            oup, 
            start_dw_kernel_size, 
            middle_dw_kernel_size, 
            middle_dw_downsample,
            stride,
            expand_ratio
        ):
        super().__init__()
        # Starting depthwise conv.
        self.start_dw_kernel_size = start_dw_kernel_size
        if self.start_dw_kernel_size:            
            stride_ = stride if not middle_dw_downsample else 1
            self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)
        # Expansion with 1x1 convs.
        expand_filters = make_divisible(inp * expand_ratio, 8)
        self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)
        # Middle depthwise conv.
        self.middle_dw_kernel_size = middle_dw_kernel_size
        if self.middle_dw_kernel_size:
            stride_ = stride if middle_dw_downsample else 1
            self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_, groups=expand_filters)
        # Projection with 1x1 convs.
        self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)
        
        # Ending depthwise conv.
        # this not used
        # _end_dw_kernel_size = 0
        # self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)
        
    def forward(self, x):
        if self.start_dw_kernel_size:
            x = self._start_dw_(x)
            # print("_start_dw_", x.shape)
        x = self._expand_conv(x)
        # print("_expand_conv", x.shape)
        if self.middle_dw_kernel_size:
            x = self._middle_dw(x)
            # print("_middle_dw", x.shape)
        x = self._proj_conv(x)
        # print("_proj_conv", x.shape)
        return x

def build_blocks(layer_spec):
    if not layer_spec.get('block_name'):
        return nn.Sequential()
    block_names = layer_spec['block_name']
    layers = nn.Sequential()
    if block_names == "convbn":
        schema_ = ['inp', 'oup', 'kernel_size', 'stride']
        args = {}
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"convbn_{i}", conv_2d(**args))
    elif block_names == "uib":
        schema_ =  ['inp', 'oup', 'start_dw_kernel_size', 'middle_dw_kernel_size', 'middle_dw_downsample', 'stride', 'expand_ratio']
        args = {}
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"uib_{i}", UniversalInvertedBottleneckBlock(**args))
    elif block_names == "fused_ib":
        schema_ = ['inp', 'oup', 'stride', 'expand_ratio', 'act']
        args = {}
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"fused_ib_{i}", InvertedResidual(**args))
    else:
        raise NotImplementedError
    return layers

class MobileNetV4(nn.Module):
    def __init__(self, model):
        # MobileNetV4ConvSmall  MobileNetV4ConvMedium  MobileNetV4ConvLarge
        # MobileNetV4HybridMedium  MobileNetV4HybridLarge
        """Params to initiate MobilenNetV4
        Args:
            model : support 5 types of models as indicated in 
            "https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py"        
        """
        super().__init__()
        assert model in MODEL_SPECS.keys()
        self.model = model
        self.spec = MODEL_SPECS[self.model]
       
        # conv0
        self.conv0 = build_blocks(self.spec['conv0'])
        # layer1
        self.layer1 = build_blocks(self.spec['layer1'])
        # layer2
        self.layer2 = build_blocks(self.spec['layer2'])
        # layer3
        self.layer3 = build_blocks(self.spec['layer3'])
        # layer4
        self.layer4 = build_blocks(self.spec['layer4'])
        # layer5   
        self.layer5 = build_blocks(self.spec['layer5'])
        self.features = nn.ModuleList([self.conv0, self.layer1, self.layer2, self.layer3, self.layer4, self.layer5])     
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
        
    def forward(self, x):
        input_size = x.size(2)
        scale = [4, 8, 16, 32]
        features = [None, None, None, None]
        for f in self.features:
            x = f(x)
            if input_size // x.size(2) in scale:
                features[scale.index(input_size // x.size(2))] = x
        return features

def MobileNetV4ConvSmall():
    model = MobileNetV4('MobileNetV4ConvSmall')
    return model

def MobileNetV4ConvMedium():
    model = MobileNetV4('MobileNetV4ConvMedium')
    return model

def MobileNetV4ConvLarge():
    model = MobileNetV4('MobileNetV4ConvLarge')
    return model

def MobileNetV4HybridMedium():
    model = MobileNetV4('MobileNetV4HybridMedium')
    return model

def MobileNetV4HybridLarge():
    model = MobileNetV4('MobileNetV4HybridLarge')
    return model

if __name__ == '__main__':
    model = MobileNetV4ConvSmall()
    inputs = torch.randn((1, 3, 640, 640))
    res = model(inputs)
    for i in res:
        print(i.size())

2.2 修改task.py

1)首先进行注册

from ultralytics.nn.backbone.mobilenetv4 import *

2)修改def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)

建议直接替换 

def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast

    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out

    is_backbone = False

    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (
            Classify,
            Conv,
            ConvTranspose,
            GhostConv,
            Bottleneck,
            GhostBottleneck,
            SPP,
            SPPF,
            DWConv,
            Focus,
            BottleneckCSP,
            C1,
            C2,
            C2f,
            C2fAttn,
            C3,
            C3TR,
            C3Ghost,
            nn.ConvTranspose2d,
            DWConvTranspose2d,
            C3x,
            RepC3
        ):
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads

            args = [c1, c2, *args[1:]]

            if m in (BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3):
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m is DySample:
            c2 = ch[f]
            args = [c2, *args]
        elif m in (HGStem, HGBlock):
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in (Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn):
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])

    #####   backbone

        elif isinstance(m, str):
            t = m
            if len(args) == 2:
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge
                   }:
            m = m(*args)
            c2 = m.channel
    #####   backbone
        else:
            c2 = ch[f]

        if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

3)修改def _predict_once(self, x, profile=False, visualize=False, embed=None):

建议直接替换

    def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # for i in x:
                #     if i is not None:
                #         print(i.size())
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

4) class DetectionModel(BaseModel):修改

        # Build strides
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):  # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
            s = 640  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x)

            try:
                m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(2, ch, s, s))])  # forward
            except RuntimeError as e:
                if 'Not implemented on the CPU' in str(e) or 'Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor)' in str(e) or 'CUDA tensor' in str(e) or 'is_cuda()' in str(e):
                    self.model.to(torch.device('cuda'))
                    m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(2, ch, s, s).to(torch.device('cuda')))])  # forward
                else:
                    raise e
            self.stride = m.stride
            m.bias_init()  # only run once
        else:
            self.stride = torch.Tensor([32])  # default stride for i.e. RTDETR

2.3  yolov8-mobilenetv4.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MobileNetV4ConvSmall, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)