LSTM网络生成爵士乐¶
0. 要解决的问题¶
① 在本次作业中,你将使用LSTM实现乐曲生成模型。你可以在作业结束时试听自己创作的音乐。
② 你将学习:
- 将LSTM应用于音乐生成。
- 通过深度学习生成自己的爵士乐曲。
① 你想专门为朋友的生日创作一首爵士乐曲。
② 但是,你不了解任何乐器或音乐作品。
③ 幸运的是,你懂得深度学习并且可以使用LSTM网络来尝试解决此问题。
④ 你将训练一个网络,根据已表演作品的风格生成新颖的爵士小歌。

1. 导入库¶
from keras.models import load_model, Model
from keras.layers import Dense, Activation, Dropout, Input, LSTM, Reshape, Lambda, RepeatVector
from keras.initializers import glorot_uniform
from keras.utils import to_categorical
from keras.optimizers import Adam
from keras import backend as K
import numpy as np
import IPython
import sys
from music21 import *
from grammar import *
from qa import *
from preprocess import *
from music_utils import *
from data_utils import *
Using TensorFlow backend. D:\11_Anaconda\envs\py3.6.3\lib\site-packages\requests\__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.11) or chardet (5.0.0)/charset_normalizer (2.0.12) doesn't match a supported version! RequestsDependencyWarning)
2. 数据集¶
① 你将在爵士乐曲语料库上训练算法。
② 运行下面的单元格以试听训练集中的音频片段。
IPython.display.Audio('./datasets/30s_seq.mp3')
① 我们已经对音乐数据进行了预处理,以根据音乐“value”呈现音乐数据。
② 你可以将每个“值”视为一个音符,其中包括一个音调和一个持续时间。例如,如果你按下特定的钢琴键0.5秒钟,则你刚刚演奏了一个音符。
③ 在音乐理论中,“值”实际上比这复杂得多。具体来说,它还捕获同时演奏多个音符所需的信息。
④ 例如,演奏音乐作品时,你可以同时按下两个钢琴键(同时演奏多个音符会产生所谓的“和弦”)。
⑤ 但是我们不需要讨论音乐理论的过多细节。
⑥ 出于此作业的目的,你需要知道的是,我们将获取值的数据集,并将学习RNN模型以生成值序列。
⑦ 我们的音乐生成系统将使用78个唯一值。
⑧ 运行以下代码以加载原始音乐数据并将其预处理为值。这可能需要几分钟。
X, Y, n_values, indices_values = load_music_utils()
print('shape of X:', X.shape)
print('number of training examples:', X.shape[0])
print('Tx (length of sequence):', X.shape[1])
print('total # of unique values:', n_values)
print('Shape of Y:', Y.shape)
shape of X: (60, 30, 78) number of training examples: 60 Tx (length of sequence): 30 total # of unique values: 78 Shape of Y: (30, 60, 78)
① 你刚刚加载了以下内容:
X:这是维度为(m, $T_x$, 78)的数组。
- 我们有m个训练示例,每个训练示例都是$T_x =30$音乐值的摘要。
- 在每个时间步,输入都是78个不同的可能值之一,表示为独热向量。
- 因此,例如,X[i,t,:]是一个独热向量,表示在时间t处第i个示例的值。
Y:本质上与X相同,但是向左(过去)移了一步。
- 与恐龙作业相似,我们对使用先前值预测下一个值的网络感兴趣,因此,给定$x^{\langle 1\rangle}, \ldots, x^{\langle t \rangle}$时,我们的序列模型将尝试预测$y^{\langle t \rangle}$。
- 然而,“Y”中的数据被重新排序为$(T_y, m, 78)$的维度,其中$T_y = T_x$,以方便之后输入到LSTM。
n_values:该数据集中不同值的数量。即78。
indices_values:python字典,映射为0-77的音乐值。
3. 搭建模型¶
① 这是我们将使用的模型结构,架构如下所示。
② 这与你在上一个笔记本中使用的Dinosaurus模型相似,不同之处在于你将用Keras实现它。

③ 我们将在更长的音乐片段中随机抽取30个值的片段来训练模型。
④ 因此不必费心设置第一个输入$x^{\langle 1 \rangle} = \vec{0}$,因为现在大部分代码段都用它来表示恐龙名称的开头。
⑤ 音频开始于一段音乐的中间。
⑥ 我们将每个片段设置为相同的长度$T_x = 30$,使得向量化更加容易。
① 在这一部分中,你将构建和训练一个音乐学习模型。
② 为此,你将需要构建一个模型,该模型采用维度为$(m, T_x, 78)$的X和维度为$(T_y, m, 78)$的Y。
③ 我们将使用具有64维隐藏状态的LSTM,设置n_a = 64。
① 函数djmodel()将使用for循环调用LSTM层$T_x$次,并且所有$T_x$副本都具有相同的权重。
- 即不应该每次都重新初始化权重,$T_x$步应该具有共享的权重。
② 在Keras中实现可共享权重的网络层的关键步骤是:
- 定义层对象(为此,我们将使用全局变量)。
- 在传播输入时调用这些对象。
③ 我们已经将你需要的层对象定义为全局变量。请运行下一个单元格以创建它们。查看Keras文档以确保你了解这些层是什么。
n_a = 64
reshapor = Reshape((1, 78)) #2.B
LSTM_cell = LSTM(n_a, return_state = True) #2.C
densor = Dense(n_values, activation='softmax') #2.D
④ 现在,reshapor, LSTM_cell 和 densor 都是层对象,你可以使用它们来实现 djmodel()。
⑤ 为了通过这些层传播Keras张量对象X,使用layer_object(X)(如果需要多个输入,则使用layer_object([X,Y]))。
⑥ 例如,reshapor(X)将通过上面定义的Reshape((1,78))层传播X。
① 练习:实现djmodel(),你需要执行2个步骤:
创建一个空列表“输出”在每个时间步保存的LSTM单元的输出。
循环$t \in 1, \ldots, T_x$:
A. 从X选择第“t”个时间步向量。选择的维度应为(78,)。为此,请使用以下代码行在Keras中创建自定义Lambda 层:
- x = Lambda(lambda x: X[:,t,:])(X)
- 查看Keras文档以了解其作用。它正在创建一个“临时”或“未命名”函数(Lambda函数就是该函数),以提取适当的独热向量,并将该函数作为Keras的Layer对象应用于X。
B. 将x重塑为(1,78)。你可能会发现reshapor()层(在下面定义)很有用。
C. 运行x通过LSTM_cell的一个步骤。记住要使用上一步的隐藏状态$a$和单元状态$c$ 初始化LSTM_cell。使用以下格式:
- a, _, c = LSTM_cell(input_x, initial_state=[previous hidden state, previous cell state])
D. 使用“densor”通过dense+softmax层传播LSTM输出的激活值。
E. 将预测值添加到"outputs"列表中
def djmodel(Tx, n_a, n_values):
"""
实现这个模型
参数:
Tx -- 语料库的长度
n_a -- 激活值的数量
n_values -- 音乐数据中唯一数据的数量
返回:
model -- Keras模型实体
"""
# 定义输入数据的维度
X = Input((Tx, n_values))
# 定义a0, 初始化隐藏状态
a0 = Input(shape=(n_a,),name="a0")
c0 = Input(shape=(n_a,),name="c0")
a = a0
c = c0
# 第一步:创建一个空的outputs列表来保存LSTM的所有时间步的输出。
outputs = []
# 第二步:循环
for t in range(Tx):
## 2.A:从X中选择第“t”个时间步向量
x = Lambda(lambda x:X[:, t, :])(X)
## 2.B:使用reshapor来对x进行重构为(1, n_values)
x = reshapor(x)
## 2.C:单步传播
a, _, c = LSTM_cell(x, initial_state=[a, c])
## 2.D:使用densor()应用于LSTM_Cell的隐藏状态输出
out = densor(a)
## 2.E:把预测值添加到"outputs"列表中
outputs.append(out)
# 第三步:创建模型实体
model = Model(inputs=[X, a0, c0], outputs=outputs)
return model
② 运行以下单元格以定义模型。我们将使用Tx=30, n_a=64(LSTM激活的维数)和n_values=78。
③ 该单元可能需要几秒钟才能运行。
# 获取模型,这里Tx=30, n_a=64,n_values=78
model = djmodel(Tx = 30 , n_a = 64, n_values = 78)
④ 现在,你需要编译模型以进行训练。我们将使用Adam优化器和交叉熵熵损失。
# 编译模型,我们使用Adam优化器与分类熵损失。
opt = Adam(lr=0.01, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
⑤ 最后,将LSTM的初始状态a0和c0初始化为零。
# 初始化a0和c0,使LSTM的初始状态为零。
m = 60
a0 = np.zeros((m, n_a))
c0 = np.zeros((m, n_a))
① 现在让我们拟合模型!
② 由于损失函数希望以每个时间步一个列表项的格式提供“Y”,因此我们需要将“Y”转换为列表。
③ list(Y)是一个包含30个项的列表,其中每个列表项的维度均为(60,78)。
④ 让我们训练100个epoch。这将需要几分钟。
import time
#开始时间
start_time = time.clock()
#开始拟合
model.fit([X, a0, c0], list(Y), epochs=100)
#结束时间
end_time = time.clock()
#计算时差
minium = end_time - start_time
print("执行了:" + str(int(minium / 60)) + "分" + str(int(minium%60)) + "秒")
WARNING:tensorflow:Variable *= will be deprecated. Use variable.assign_mul if you want assignment to the variable value or 'x = x * y' if you want a new python Tensor object. Epoch 1/100 60/60 [==============================] - 11s 188ms/step - loss: 125.7255 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0000e+00 - dense_1_acc_1: 0.0000e+00 - dense_1_acc_2: 0.1167 - dense_1_acc_3: 0.0333 - dense_1_acc_4: 0.0333 - dense_1_acc_5: 0.0833 - dense_1_acc_6: 0.0667 - dense_1_acc_7: 0.0167 - dense_1_acc_8: 0.0333 - dense_1_acc_9: 0.0667 - dense_1_acc_10: 0.0167 - dense_1_acc_11: 0.0333 - dense_1_acc_12: 0.0500 - dense_1_acc_13: 0.1167 - dense_1_acc_14: 0.1000 - dense_1_acc_15: 0.0500 - dense_1_acc_16: 0.0667 - dense_1_acc_17: 0.0333 - dense_1_acc_18: 0.0500 - dense_1_acc_19: 0.0167 - dense_1_acc_20: 0.0500 - dense_1_acc_21: 0.0167 - dense_1_acc_22: 0.0833 - dense_1_acc_23: 0.0167 - dense_1_acc_24: 0.0333 - dense_1_acc_25: 0.0667 - dense_1_acc_26: 0.0500 - dense_1_acc_27: 0.0500 - dense_1_acc_28: 0.0833 - dense_1_acc_29: 0.0000e+00 Epoch 2/100 60/60 [==============================] - 0s 781us/step - loss: 121.4781 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.0833 - dense_1_acc_2: 0.1833 - dense_1_acc_3: 0.1333 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1333 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.1500 - dense_1_acc_8: 0.1167 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.0833 - dense_1_acc_11: 0.0500 - dense_1_acc_12: 0.0833 - dense_1_acc_13: 0.1167 - dense_1_acc_14: 0.1000 - dense_1_acc_15: 0.1333 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.0667 - dense_1_acc_18: 0.0833 - dense_1_acc_19: 0.1333 - dense_1_acc_20: 0.1167 - dense_1_acc_21: 0.0333 - dense_1_acc_22: 0.0833 - dense_1_acc_23: 0.0833 - dense_1_acc_24: 0.1000 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.0833 - dense_1_acc_28: 0.1333 - dense_1_acc_29: 0.0000e+00 Epoch 3/100 60/60 [==============================] - 0s 804us/step - loss: 115.8048 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.1667 - dense_1_acc_3: 0.1667 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1000 - dense_1_acc_6: 0.0833 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1167 - dense_1_acc_9: 0.0833 - dense_1_acc_10: 0.1000 - dense_1_acc_11: 0.0667 - dense_1_acc_12: 0.0833 - dense_1_acc_13: 0.1333 - dense_1_acc_14: 0.0833 - dense_1_acc_15: 0.0500 - dense_1_acc_16: 0.1000 - dense_1_acc_17: 0.0500 - dense_1_acc_18: 0.0833 - dense_1_acc_19: 0.0667 - dense_1_acc_20: 0.0333 - dense_1_acc_21: 0.1000 - dense_1_acc_22: 0.0333 - dense_1_acc_23: 0.0500 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.0500 - dense_1_acc_26: 0.0667 - dense_1_acc_27: 0.0500 - dense_1_acc_28: 0.0500 - dense_1_acc_29: 0.0000e+00 Epoch 4/100 60/60 [==============================] - 0s 757us/step - loss: 111.6879 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.1833 - dense_1_acc_3: 0.1667 - dense_1_acc_4: 0.2167 - dense_1_acc_5: 0.1333 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.1167 - dense_1_acc_10: 0.1333 - dense_1_acc_11: 0.0500 - dense_1_acc_12: 0.1833 - dense_1_acc_13: 0.1333 - dense_1_acc_14: 0.1833 - dense_1_acc_15: 0.1167 - dense_1_acc_16: 0.1833 - dense_1_acc_17: 0.1333 - dense_1_acc_18: 0.1667 - dense_1_acc_19: 0.0333 - dense_1_acc_20: 0.0833 - dense_1_acc_21: 0.1333 - dense_1_acc_22: 0.1000 - dense_1_acc_23: 0.1000 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.1333 - dense_1_acc_28: 0.1000 - dense_1_acc_29: 0.0000e+00 Epoch 5/100 60/60 [==============================] - 0s 748us/step - loss: 109.0155 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.2000 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.1500 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.1167 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.0500 - dense_1_acc_12: 0.1333 - dense_1_acc_13: 0.1333 - dense_1_acc_14: 0.1333 - dense_1_acc_15: 0.1333 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.0500 - dense_1_acc_18: 0.1667 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.1167 - dense_1_acc_21: 0.0833 - dense_1_acc_22: 0.1167 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.0833 - dense_1_acc_25: 0.1833 - dense_1_acc_26: 0.0500 - dense_1_acc_27: 0.1667 - dense_1_acc_28: 0.1167 - dense_1_acc_29: 0.0000e+00 Epoch 6/100 60/60 [==============================] - 0s 749us/step - loss: 106.6528 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1500 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.1500 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.1000 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1500 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.1167 - dense_1_acc_11: 0.0833 - dense_1_acc_12: 0.1667 - dense_1_acc_13: 0.1667 - dense_1_acc_14: 0.1333 - dense_1_acc_15: 0.1667 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.0833 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.1500 - dense_1_acc_20: 0.1167 - dense_1_acc_21: 0.1000 - dense_1_acc_22: 0.0833 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.1167 - dense_1_acc_28: 0.1000 - dense_1_acc_29: 0.0000e+00 Epoch 7/100 60/60 [==============================] - 0s 730us/step - loss: 103.6435 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1167 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.2167 - dense_1_acc_5: 0.1333 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.1667 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.1167 - dense_1_acc_12: 0.2167 - dense_1_acc_13: 0.2000 - dense_1_acc_14: 0.1167 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.1667 - dense_1_acc_17: 0.1500 - dense_1_acc_18: 0.1333 - dense_1_acc_19: 0.1333 - dense_1_acc_20: 0.1333 - dense_1_acc_21: 0.0833 - dense_1_acc_22: 0.1500 - dense_1_acc_23: 0.1167 - dense_1_acc_24: 0.0667 - dense_1_acc_25: 0.1500 - dense_1_acc_26: 0.1333 - dense_1_acc_27: 0.1667 - dense_1_acc_28: 0.1000 - dense_1_acc_29: 0.0000e+00 Epoch 8/100 60/60 [==============================] - 0s 750us/step - loss: 100.0955 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1167 - dense_1_acc_1: 0.1000 - dense_1_acc_2: 0.1833 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1000 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.2333 - dense_1_acc_8: 0.1333 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1667 - dense_1_acc_11: 0.1000 - dense_1_acc_12: 0.2333 - dense_1_acc_13: 0.2667 - dense_1_acc_14: 0.1167 - dense_1_acc_15: 0.1500 - dense_1_acc_16: 0.2167 - dense_1_acc_17: 0.1000 - dense_1_acc_18: 0.1500 - dense_1_acc_19: 0.1667 - dense_1_acc_20: 0.1667 - dense_1_acc_21: 0.1000 - dense_1_acc_22: 0.1167 - dense_1_acc_23: 0.1333 - dense_1_acc_24: 0.1000 - dense_1_acc_25: 0.2667 - dense_1_acc_26: 0.1000 - dense_1_acc_27: 0.1667 - dense_1_acc_28: 0.1500 - dense_1_acc_29: 0.0000e+00 Epoch 9/100 60/60 [==============================] - 0s 748us/step - loss: 96.0606 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1167 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.1833 - dense_1_acc_4: 0.2000 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.1167 - dense_1_acc_7: 0.1833 - dense_1_acc_8: 0.2167 - dense_1_acc_9: 0.1500 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.1000 - dense_1_acc_12: 0.2167 - dense_1_acc_13: 0.2167 - dense_1_acc_14: 0.1833 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.2333 - dense_1_acc_17: 0.1333 - dense_1_acc_18: 0.1500 - dense_1_acc_19: 0.1833 - dense_1_acc_20: 0.1500 - dense_1_acc_21: 0.1500 - dense_1_acc_22: 0.1333 - dense_1_acc_23: 0.1333 - dense_1_acc_24: 0.1667 - dense_1_acc_25: 0.2667 - dense_1_acc_26: 0.2167 - dense_1_acc_27: 0.1333 - dense_1_acc_28: 0.1667 - dense_1_acc_29: 0.0000e+00 Epoch 10/100 60/60 [==============================] - 0s 724us/step - loss: 92.2617 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1167 - dense_1_acc_2: 0.2000 - dense_1_acc_3: 0.2167 - dense_1_acc_4: 0.2333 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.1333 - dense_1_acc_7: 0.2333 - dense_1_acc_8: 0.2000 - dense_1_acc_9: 0.1667 - dense_1_acc_10: 0.1500 - dense_1_acc_11: 0.1000 - dense_1_acc_12: 0.2000 - dense_1_acc_13: 0.2000 - dense_1_acc_14: 0.2167 - dense_1_acc_15: 0.1833 - dense_1_acc_16: 0.1667 - dense_1_acc_17: 0.1333 - dense_1_acc_18: 0.2000 - dense_1_acc_19: 0.2000 - dense_1_acc_20: 0.1833 - dense_1_acc_21: 0.2167 - dense_1_acc_22: 0.1667 - dense_1_acc_23: 0.1500 - dense_1_acc_24: 0.1500 - dense_1_acc_25: 0.2667 - dense_1_acc_26: 0.2167 - dense_1_acc_27: 0.1333 - dense_1_acc_28: 0.2000 - dense_1_acc_29: 0.0000e+00 Epoch 11/100 60/60 [==============================] - 0s 740us/step - loss: 88.6415 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1167 - dense_1_acc_2: 0.2167 - dense_1_acc_3: 0.2333 - dense_1_acc_4: 0.2833 - dense_1_acc_5: 0.1500 - dense_1_acc_6: 0.1500 - dense_1_acc_7: 0.2000 - dense_1_acc_8: 0.1500 - dense_1_acc_9: 0.2000 - dense_1_acc_10: 0.1833 - dense_1_acc_11: 0.1500 - dense_1_acc_12: 0.2833 - dense_1_acc_13: 0.2500 - dense_1_acc_14: 0.2333 - dense_1_acc_15: 0.2000 - dense_1_acc_16: 0.2000 - dense_1_acc_17: 0.1833 - dense_1_acc_18: 0.1833 - dense_1_acc_19: 0.2167 - dense_1_acc_20: 0.2000 - dense_1_acc_21: 0.2500 - dense_1_acc_22: 0.2500 - dense_1_acc_23: 0.1500 - dense_1_acc_24: 0.1667 - dense_1_acc_25: 0.3333 - dense_1_acc_26: 0.2333 - dense_1_acc_27: 0.2000 - dense_1_acc_28: 0.1500 - dense_1_acc_29: 0.0000e+00 Epoch 12/100 60/60 [==============================] - 0s 748us/step - loss: 85.7123 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.1000 - dense_1_acc_1: 0.1167 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.2500 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.1667 - dense_1_acc_6: 0.1833 - dense_1_acc_7: 0.2833 - dense_1_acc_8: 0.3167 - dense_1_acc_9: 0.2500 - dense_1_acc_10: 0.2333 - dense_1_acc_11: 0.1833 - dense_1_acc_12: 0.3333 - dense_1_acc_13: 0.2833 - dense_1_acc_14: 0.2000 - dense_1_acc_15: 0.2500 - dense_1_acc_16: 0.2833 - dense_1_acc_17: 0.1667 - dense_1_acc_18: 0.2000 - dense_1_acc_19: 0.2500 - dense_1_acc_20: 0.2667 - dense_1_acc_21: 0.1833 - dense_1_acc_22: 0.2167 - dense_1_acc_23: 0.2167 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.3333 - dense_1_acc_26: 0.2500 - dense_1_acc_27: 0.2667 - dense_1_acc_28: 0.1667 - dense_1_acc_29: 0.0000e+00 Epoch 13/100 60/60 [==============================] - 0s 765us/step - loss: 81.3701 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0833 - dense_1_acc_1: 0.1500 - dense_1_acc_2: 0.2667 - dense_1_acc_3: 0.2833 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.1167 - dense_1_acc_6: 0.2167 - dense_1_acc_7: 0.2833 - dense_1_acc_8: 0.2667 - dense_1_acc_9: 0.2833 - dense_1_acc_10: 0.2667 - dense_1_acc_11: 0.2833 - dense_1_acc_12: 0.3000 - dense_1_acc_13: 0.3000 - dense_1_acc_14: 0.2167 - dense_1_acc_15: 0.2333 - dense_1_acc_16: 0.3167 - dense_1_acc_17: 0.2833 - dense_1_acc_18: 0.3000 - dense_1_acc_19: 0.2500 - dense_1_acc_20: 0.3000 - dense_1_acc_21: 0.2000 - dense_1_acc_22: 0.2333 - dense_1_acc_23: 0.2333 - dense_1_acc_24: 0.1333 - dense_1_acc_25: 0.3833 - dense_1_acc_26: 0.2000 - dense_1_acc_27: 0.3000 - dense_1_acc_28: 0.2167 - dense_1_acc_29: 0.0000e+00 Epoch 14/100 60/60 [==============================] - 0s 782us/step - loss: 78.8086 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1500 - dense_1_acc_2: 0.3167 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.2167 - dense_1_acc_6: 0.3000 - dense_1_acc_7: 0.3000 - dense_1_acc_8: 0.3833 - dense_1_acc_9: 0.3333 - dense_1_acc_10: 0.3333 - dense_1_acc_11: 0.3000 - dense_1_acc_12: 0.3833 - dense_1_acc_13: 0.4000 - dense_1_acc_14: 0.2667 - dense_1_acc_15: 0.2000 - dense_1_acc_16: 0.2667 - dense_1_acc_17: 0.3167 - dense_1_acc_18: 0.3667 - dense_1_acc_19: 0.2167 - dense_1_acc_20: 0.2667 - dense_1_acc_21: 0.2500 - dense_1_acc_22: 0.3167 - dense_1_acc_23: 0.2333 - dense_1_acc_24: 0.2000 - dense_1_acc_25: 0.3667 - dense_1_acc_26: 0.3333 - dense_1_acc_27: 0.3500 - dense_1_acc_28: 0.2333 - dense_1_acc_29: 0.0000e+00 Epoch 15/100 60/60 [==============================] - 0s 795us/step - loss: 74.6084 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0333 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3000 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3500 - dense_1_acc_5: 0.3167 - dense_1_acc_6: 0.3167 - dense_1_acc_7: 0.3333 - dense_1_acc_8: 0.4000 - dense_1_acc_9: 0.4333 - dense_1_acc_10: 0.3667 - dense_1_acc_11: 0.3000 - dense_1_acc_12: 0.3667 - dense_1_acc_13: 0.4000 - dense_1_acc_14: 0.2667 - dense_1_acc_15: 0.2833 - dense_1_acc_16: 0.3667 - dense_1_acc_17: 0.3000 - dense_1_acc_18: 0.3500 - dense_1_acc_19: 0.3667 - dense_1_acc_20: 0.3667 - dense_1_acc_21: 0.2667 - dense_1_acc_22: 0.2333 - dense_1_acc_23: 0.2333 - dense_1_acc_24: 0.1667 - dense_1_acc_25: 0.4000 - dense_1_acc_26: 0.2833 - dense_1_acc_27: 0.3167 - dense_1_acc_28: 0.2500 - dense_1_acc_29: 0.0000e+00 Epoch 16/100 60/60 [==============================] - 0s 765us/step - loss: 71.8594 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.2833 - dense_1_acc_3: 0.2833 - dense_1_acc_4: 0.3333 - dense_1_acc_5: 0.3333 - dense_1_acc_6: 0.3167 - dense_1_acc_7: 0.3333 - dense_1_acc_8: 0.4500 - dense_1_acc_9: 0.3667 - dense_1_acc_10: 0.3833 - dense_1_acc_11: 0.3000 - dense_1_acc_12: 0.4000 - dense_1_acc_13: 0.3833 - dense_1_acc_14: 0.3000 - dense_1_acc_15: 0.2667 - dense_1_acc_16: 0.4333 - dense_1_acc_17: 0.3000 - dense_1_acc_18: 0.3833 - dense_1_acc_19: 0.3833 - dense_1_acc_20: 0.4500 - dense_1_acc_21: 0.3000 - dense_1_acc_22: 0.3000 - dense_1_acc_23: 0.2833 - dense_1_acc_24: 0.2333 - dense_1_acc_25: 0.3667 - dense_1_acc_26: 0.3500 - dense_1_acc_27: 0.2667 - dense_1_acc_28: 0.3333 - dense_1_acc_29: 0.0000e+00 Epoch 17/100 60/60 [==============================] - 0s 798us/step - loss: 68.2109 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3333 - dense_1_acc_5: 0.3000 - dense_1_acc_6: 0.3667 - dense_1_acc_7: 0.3500 - dense_1_acc_8: 0.4500 - dense_1_acc_9: 0.4000 - dense_1_acc_10: 0.3833 - dense_1_acc_11: 0.2333 - dense_1_acc_12: 0.4167 - dense_1_acc_13: 0.4667 - dense_1_acc_14: 0.3167 - dense_1_acc_15: 0.3333 - dense_1_acc_16: 0.4167 - dense_1_acc_17: 0.4333 - dense_1_acc_18: 0.3667 - dense_1_acc_19: 0.4000 - dense_1_acc_20: 0.3167 - dense_1_acc_21: 0.2833 - dense_1_acc_22: 0.3500 - dense_1_acc_23: 0.3000 - dense_1_acc_24: 0.2500 - dense_1_acc_25: 0.4000 - dense_1_acc_26: 0.3833 - dense_1_acc_27: 0.3667 - dense_1_acc_28: 0.3667 - dense_1_acc_29: 0.0000e+00 Epoch 18/100 60/60 [==============================] - 0s 771us/step - loss: 65.1542 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3167 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.3000 - dense_1_acc_5: 0.3333 - dense_1_acc_6: 0.3833 - dense_1_acc_7: 0.4167 - dense_1_acc_8: 0.4333 - dense_1_acc_9: 0.3833 - dense_1_acc_10: 0.4000 - dense_1_acc_11: 0.3333 - dense_1_acc_12: 0.4833 - dense_1_acc_13: 0.4500 - dense_1_acc_14: 0.4000 - dense_1_acc_15: 0.3167 - dense_1_acc_16: 0.4667 - dense_1_acc_17: 0.4333 - dense_1_acc_18: 0.3667 - dense_1_acc_19: 0.4167 - dense_1_acc_20: 0.5000 - dense_1_acc_21: 0.3667 - dense_1_acc_22: 0.3667 - dense_1_acc_23: 0.3667 - dense_1_acc_24: 0.3167 - dense_1_acc_25: 0.5500 - dense_1_acc_26: 0.4833 - dense_1_acc_27: 0.4167 - dense_1_acc_28: 0.4333 - dense_1_acc_29: 0.0000e+00 Epoch 19/100
60/60 [==============================] - 0s 765us/step - loss: 61.9908 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3333 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3167 - dense_1_acc_5: 0.4333 - dense_1_acc_6: 0.3833 - dense_1_acc_7: 0.4167 - dense_1_acc_8: 0.4667 - dense_1_acc_9: 0.5500 - dense_1_acc_10: 0.4167 - dense_1_acc_11: 0.4500 - dense_1_acc_12: 0.4833 - dense_1_acc_13: 0.4667 - dense_1_acc_14: 0.3833 - dense_1_acc_15: 0.3167 - dense_1_acc_16: 0.4500 - dense_1_acc_17: 0.4333 - dense_1_acc_18: 0.5000 - dense_1_acc_19: 0.5000 - dense_1_acc_20: 0.5667 - dense_1_acc_21: 0.4833 - dense_1_acc_22: 0.4667 - dense_1_acc_23: 0.5167 - dense_1_acc_24: 0.5000 - dense_1_acc_25: 0.6000 - dense_1_acc_26: 0.5000 - dense_1_acc_27: 0.5167 - dense_1_acc_28: 0.4833 - dense_1_acc_29: 0.0000e+00 Epoch 20/100 60/60 [==============================] - 0s 790us/step - loss: 59.0314 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3500 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3833 - dense_1_acc_5: 0.4500 - dense_1_acc_6: 0.4000 - dense_1_acc_7: 0.3500 - dense_1_acc_8: 0.5000 - dense_1_acc_9: 0.5000 - dense_1_acc_10: 0.4000 - dense_1_acc_11: 0.5333 - dense_1_acc_12: 0.6000 - dense_1_acc_13: 0.5000 - dense_1_acc_14: 0.4000 - dense_1_acc_15: 0.4167 - dense_1_acc_16: 0.5500 - dense_1_acc_17: 0.5000 - dense_1_acc_18: 0.4667 - dense_1_acc_19: 0.5167 - dense_1_acc_20: 0.5500 - dense_1_acc_21: 0.5167 - dense_1_acc_22: 0.4667 - dense_1_acc_23: 0.5167 - dense_1_acc_24: 0.4667 - dense_1_acc_25: 0.6167 - dense_1_acc_26: 0.5167 - dense_1_acc_27: 0.5167 - dense_1_acc_28: 0.5500 - dense_1_acc_29: 0.0000e+00 Epoch 21/100 60/60 [==============================] - 0s 781us/step - loss: 56.0007 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3667 - dense_1_acc_3: 0.3000 - dense_1_acc_4: 0.3833 - dense_1_acc_5: 0.4500 - dense_1_acc_6: 0.4667 - dense_1_acc_7: 0.4333 - dense_1_acc_8: 0.6000 - dense_1_acc_9: 0.5833 - dense_1_acc_10: 0.5000 - dense_1_acc_11: 0.5833 - dense_1_acc_12: 0.6667 - dense_1_acc_13: 0.6000 - dense_1_acc_14: 0.4500 - dense_1_acc_15: 0.4833 - dense_1_acc_16: 0.6333 - dense_1_acc_17: 0.5167 - dense_1_acc_18: 0.5500 - dense_1_acc_19: 0.5833 - dense_1_acc_20: 0.6333 - dense_1_acc_21: 0.5333 - dense_1_acc_22: 0.4667 - dense_1_acc_23: 0.4833 - dense_1_acc_24: 0.4167 - dense_1_acc_25: 0.6333 - dense_1_acc_26: 0.5500 - dense_1_acc_27: 0.5500 - dense_1_acc_28: 0.5500 - dense_1_acc_29: 0.0000e+00 Epoch 22/100 60/60 [==============================] - 0s 759us/step - loss: 53.1026 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3500 - dense_1_acc_3: 0.3167 - dense_1_acc_4: 0.4333 - dense_1_acc_5: 0.4333 - dense_1_acc_6: 0.5500 - dense_1_acc_7: 0.5333 - dense_1_acc_8: 0.5833 - dense_1_acc_9: 0.5667 - dense_1_acc_10: 0.5667 - dense_1_acc_11: 0.6333 - dense_1_acc_12: 0.6833 - dense_1_acc_13: 0.6333 - dense_1_acc_14: 0.4667 - dense_1_acc_15: 0.5333 - dense_1_acc_16: 0.6833 - dense_1_acc_17: 0.6000 - dense_1_acc_18: 0.5667 - dense_1_acc_19: 0.6833 - dense_1_acc_20: 0.6333 - dense_1_acc_21: 0.5667 - dense_1_acc_22: 0.5833 - dense_1_acc_23: 0.6167 - dense_1_acc_24: 0.5167 - dense_1_acc_25: 0.6667 - dense_1_acc_26: 0.6000 - dense_1_acc_27: 0.5500 - dense_1_acc_28: 0.5500 - dense_1_acc_29: 0.0000e+00 Epoch 23/100 60/60 [==============================] - 0s 781us/step - loss: 50.4716 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1667 - dense_1_acc_2: 0.3833 - dense_1_acc_3: 0.3333 - dense_1_acc_4: 0.4500 - dense_1_acc_5: 0.4500 - dense_1_acc_6: 0.5500 - dense_1_acc_7: 0.5667 - dense_1_acc_8: 0.5833 - dense_1_acc_9: 0.6000 - dense_1_acc_10: 0.5333 - dense_1_acc_11: 0.6167 - dense_1_acc_12: 0.6667 - dense_1_acc_13: 0.6000 - dense_1_acc_14: 0.5167 - dense_1_acc_15: 0.5500 - dense_1_acc_16: 0.6667 - dense_1_acc_17: 0.6000 - dense_1_acc_18: 0.6500 - dense_1_acc_19: 0.7167 - dense_1_acc_20: 0.6333 - dense_1_acc_21: 0.6833 - dense_1_acc_22: 0.6667 - dense_1_acc_23: 0.7000 - dense_1_acc_24: 0.5500 - dense_1_acc_25: 0.6833 - dense_1_acc_26: 0.6333 - dense_1_acc_27: 0.6333 - dense_1_acc_28: 0.6667 - dense_1_acc_29: 0.0000e+00 Epoch 24/100 60/60 [==============================] - 0s 781us/step - loss: 47.9082 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.1833 - dense_1_acc_2: 0.4000 - dense_1_acc_3: 0.3333 - dense_1_acc_4: 0.5000 - dense_1_acc_5: 0.5000 - dense_1_acc_6: 0.5333 - dense_1_acc_7: 0.6167 - dense_1_acc_8: 0.6167 - dense_1_acc_9: 0.6333 - dense_1_acc_10: 0.6000 - dense_1_acc_11: 0.5833 - dense_1_acc_12: 0.7167 - dense_1_acc_13: 0.7000 - dense_1_acc_14: 0.6000 - dense_1_acc_15: 0.6000 - dense_1_acc_16: 0.7667 - dense_1_acc_17: 0.6167 - dense_1_acc_18: 0.7167 - dense_1_acc_19: 0.7500 - dense_1_acc_20: 0.7333 - dense_1_acc_21: 0.7500 - dense_1_acc_22: 0.6833 - dense_1_acc_23: 0.7167 - dense_1_acc_24: 0.6333 - dense_1_acc_25: 0.7167 - dense_1_acc_26: 0.6167 - dense_1_acc_27: 0.6833 - dense_1_acc_28: 0.6833 - dense_1_acc_29: 0.0000e+00 Epoch 25/100 60/60 [==============================] - 0s 798us/step - loss: 45.4234 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4333 - dense_1_acc_3: 0.3500 - dense_1_acc_4: 0.5000 - dense_1_acc_5: 0.5333 - dense_1_acc_6: 0.5667 - dense_1_acc_7: 0.6333 - dense_1_acc_8: 0.6667 - dense_1_acc_9: 0.7500 - dense_1_acc_10: 0.6333 - dense_1_acc_11: 0.7500 - dense_1_acc_12: 0.7333 - dense_1_acc_13: 0.7500 - dense_1_acc_14: 0.6167 - dense_1_acc_15: 0.6667 - dense_1_acc_16: 0.8167 - dense_1_acc_17: 0.6833 - dense_1_acc_18: 0.7667 - dense_1_acc_19: 0.6667 - dense_1_acc_20: 0.6667 - dense_1_acc_21: 0.8667 - dense_1_acc_22: 0.7667 - dense_1_acc_23: 0.7333 - dense_1_acc_24: 0.6833 - dense_1_acc_25: 0.7333 - dense_1_acc_26: 0.6833 - dense_1_acc_27: 0.6667 - dense_1_acc_28: 0.7167 - dense_1_acc_29: 0.0000e+00 Epoch 26/100 60/60 [==============================] - 0s 765us/step - loss: 43.0743 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.2667 - dense_1_acc_2: 0.4833 - dense_1_acc_3: 0.3833 - dense_1_acc_4: 0.5167 - dense_1_acc_5: 0.5667 - dense_1_acc_6: 0.6000 - dense_1_acc_7: 0.6333 - dense_1_acc_8: 0.6833 - dense_1_acc_9: 0.7667 - dense_1_acc_10: 0.6333 - dense_1_acc_11: 0.8000 - dense_1_acc_12: 0.8167 - dense_1_acc_13: 0.7333 - dense_1_acc_14: 0.7000 - dense_1_acc_15: 0.6833 - dense_1_acc_16: 0.8167 - dense_1_acc_17: 0.7167 - dense_1_acc_18: 0.8167 - dense_1_acc_19: 0.7667 - dense_1_acc_20: 0.7333 - dense_1_acc_21: 0.8167 - dense_1_acc_22: 0.8000 - dense_1_acc_23: 0.7333 - dense_1_acc_24: 0.7167 - dense_1_acc_25: 0.7833 - dense_1_acc_26: 0.7333 - dense_1_acc_27: 0.7167 - dense_1_acc_28: 0.7333 - dense_1_acc_29: 0.0000e+00 Epoch 27/100 60/60 [==============================] - 0s 781us/step - loss: 40.7659 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.2833 - dense_1_acc_2: 0.5167 - dense_1_acc_3: 0.4000 - dense_1_acc_4: 0.5167 - dense_1_acc_5: 0.6167 - dense_1_acc_6: 0.6333 - dense_1_acc_7: 0.7833 - dense_1_acc_8: 0.7833 - dense_1_acc_9: 0.7833 - dense_1_acc_10: 0.6333 - dense_1_acc_11: 0.8000 - dense_1_acc_12: 0.8333 - dense_1_acc_13: 0.7333 - dense_1_acc_14: 0.7333 - dense_1_acc_15: 0.7500 - dense_1_acc_16: 0.8333 - dense_1_acc_17: 0.8000 - dense_1_acc_18: 0.8500 - dense_1_acc_19: 0.8167 - dense_1_acc_20: 0.7167 - dense_1_acc_21: 0.8167 - dense_1_acc_22: 0.8000 - dense_1_acc_23: 0.7667 - dense_1_acc_24: 0.7167 - dense_1_acc_25: 0.8167 - dense_1_acc_26: 0.8333 - dense_1_acc_27: 0.7500 - dense_1_acc_28: 0.7833 - dense_1_acc_29: 0.0000e+00 Epoch 28/100 60/60 [==============================] - 0s 794us/step - loss: 38.6143 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.2833 - dense_1_acc_2: 0.5333 - dense_1_acc_3: 0.4333 - dense_1_acc_4: 0.4833 - dense_1_acc_5: 0.6333 - dense_1_acc_6: 0.7667 - dense_1_acc_7: 0.7833 - dense_1_acc_8: 0.8333 - dense_1_acc_9: 0.8333 - dense_1_acc_10: 0.7500 - dense_1_acc_11: 0.8833 - dense_1_acc_12: 0.8500 - dense_1_acc_13: 0.8667 - dense_1_acc_14: 0.8000 - dense_1_acc_15: 0.7833 - dense_1_acc_16: 0.8500 - dense_1_acc_17: 0.8000 - dense_1_acc_18: 0.8667 - dense_1_acc_19: 0.8333 - dense_1_acc_20: 0.7833 - dense_1_acc_21: 0.8667 - dense_1_acc_22: 0.8333 - dense_1_acc_23: 0.8333 - dense_1_acc_24: 0.7500 - dense_1_acc_25: 0.8333 - dense_1_acc_26: 0.8333 - dense_1_acc_27: 0.7833 - dense_1_acc_28: 0.8000 - dense_1_acc_29: 0.0000e+00 Epoch 29/100 60/60 [==============================] - 0s 790us/step - loss: 36.4704 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.2833 - dense_1_acc_2: 0.5500 - dense_1_acc_3: 0.4500 - dense_1_acc_4: 0.5833 - dense_1_acc_5: 0.7833 - dense_1_acc_6: 0.8000 - dense_1_acc_7: 0.7667 - dense_1_acc_8: 0.8500 - dense_1_acc_9: 0.9167 - dense_1_acc_10: 0.8167 - dense_1_acc_11: 0.9333 - dense_1_acc_12: 0.9000 - dense_1_acc_13: 0.8833 - dense_1_acc_14: 0.8667 - dense_1_acc_15: 0.8500 - dense_1_acc_16: 0.9000 - dense_1_acc_17: 0.8667 - dense_1_acc_18: 0.8167 - dense_1_acc_19: 0.8833 - dense_1_acc_20: 0.8167 - dense_1_acc_21: 0.8833 - dense_1_acc_22: 0.8000 - dense_1_acc_23: 0.9000 - dense_1_acc_24: 0.8000 - dense_1_acc_25: 0.8667 - dense_1_acc_26: 0.8500 - dense_1_acc_27: 0.8167 - dense_1_acc_28: 0.8333 - dense_1_acc_29: 0.0000e+00 Epoch 30/100 60/60 [==============================] - 0s 792us/step - loss: 34.4371 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.5667 - dense_1_acc_3: 0.5000 - dense_1_acc_4: 0.5667 - dense_1_acc_5: 0.8333 - dense_1_acc_6: 0.8000 - dense_1_acc_7: 0.8000 - dense_1_acc_8: 0.8500 - dense_1_acc_9: 0.8500 - dense_1_acc_10: 0.8333 - dense_1_acc_11: 0.9167 - dense_1_acc_12: 0.9000 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.8500 - dense_1_acc_15: 0.8667 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.8333 - dense_1_acc_18: 0.8833 - dense_1_acc_19: 0.9167 - dense_1_acc_20: 0.8833 - dense_1_acc_21: 0.9167 - dense_1_acc_22: 0.8333 - dense_1_acc_23: 0.9667 - dense_1_acc_24: 0.7667 - dense_1_acc_25: 0.9000 - dense_1_acc_26: 0.8500 - dense_1_acc_27: 0.8833 - dense_1_acc_28: 0.8667 - dense_1_acc_29: 0.0000e+00 Epoch 31/100 60/60 [==============================] - 0s 794us/step - loss: 32.5566 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3333 - dense_1_acc_2: 0.5667 - dense_1_acc_3: 0.5667 - dense_1_acc_4: 0.6167 - dense_1_acc_5: 0.8333 - dense_1_acc_6: 0.8167 - dense_1_acc_7: 0.8833 - dense_1_acc_8: 0.8833 - dense_1_acc_9: 0.8667 - dense_1_acc_10: 0.8333 - dense_1_acc_11: 0.9333 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9333 - dense_1_acc_14: 0.8333 - dense_1_acc_15: 0.9167 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.8500 - dense_1_acc_18: 0.9333 - dense_1_acc_19: 0.8833 - dense_1_acc_20: 0.8667 - dense_1_acc_21: 0.9167 - dense_1_acc_22: 0.9000 - dense_1_acc_23: 0.9667 - dense_1_acc_24: 0.8000 - dense_1_acc_25: 0.9167 - dense_1_acc_26: 0.8833 - dense_1_acc_27: 0.9000 - dense_1_acc_28: 0.8833 - dense_1_acc_29: 0.0000e+00 Epoch 32/100 60/60 [==============================] - 0s 781us/step - loss: 30.7366 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3500 - dense_1_acc_2: 0.5833 - dense_1_acc_3: 0.5667 - dense_1_acc_4: 0.6333 - dense_1_acc_5: 0.8500 - dense_1_acc_6: 0.8167 - dense_1_acc_7: 0.8333 - dense_1_acc_8: 0.8833 - dense_1_acc_9: 0.9000 - dense_1_acc_10: 0.9500 - dense_1_acc_11: 0.9500 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.9000 - dense_1_acc_15: 0.9333 - dense_1_acc_16: 0.9333 - dense_1_acc_17: 0.9667 - dense_1_acc_18: 0.9667 - dense_1_acc_19: 0.9500 - dense_1_acc_20: 0.9500 - dense_1_acc_21: 0.9667 - dense_1_acc_22: 0.9333 - dense_1_acc_23: 0.9667 - dense_1_acc_24: 0.8167 - dense_1_acc_25: 0.9000 - dense_1_acc_26: 0.9000 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.8667 - dense_1_acc_29: 0.0000e+00 Epoch 33/100 60/60 [==============================] - 0s 765us/step - loss: 29.0299 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3500 - dense_1_acc_2: 0.6333 - dense_1_acc_3: 0.5833 - dense_1_acc_4: 0.7333 - dense_1_acc_5: 0.8500 - dense_1_acc_6: 0.8833 - dense_1_acc_7: 0.9000 - dense_1_acc_8: 0.8667 - dense_1_acc_9: 0.9000 - dense_1_acc_10: 0.9333 - dense_1_acc_11: 0.9667 - dense_1_acc_12: 0.9500 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.9167 - dense_1_acc_15: 0.9500 - dense_1_acc_16: 0.9500 - dense_1_acc_17: 0.9667 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 0.9667 - dense_1_acc_20: 0.9500 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9667 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.8500 - dense_1_acc_25: 0.9333 - dense_1_acc_26: 0.9167 - dense_1_acc_27: 0.9333 - dense_1_acc_28: 0.8833 - dense_1_acc_29: 0.0000e+00 Epoch 34/100 60/60 [==============================] - 0s 790us/step - loss: 27.3780 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3500 - dense_1_acc_2: 0.6333 - dense_1_acc_3: 0.6333 - dense_1_acc_4: 0.7500 - dense_1_acc_5: 0.8667 - dense_1_acc_6: 0.9000 - dense_1_acc_7: 0.9167 - dense_1_acc_8: 0.8667 - dense_1_acc_9: 0.9000 - dense_1_acc_10: 0.9333 - dense_1_acc_11: 0.9833 - dense_1_acc_12: 0.9667 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 0.9500 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 0.9833 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 0.9833 - dense_1_acc_20: 0.9833 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9667 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.8667 - dense_1_acc_25: 0.9667 - dense_1_acc_26: 0.9667 - dense_1_acc_27: 0.9500 - dense_1_acc_28: 0.9167 - dense_1_acc_29: 0.0000e+00 Epoch 35/100 60/60 [==============================] - 0s 798us/step - loss: 25.8726 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.3833 - dense_1_acc_2: 0.6500 - dense_1_acc_3: 0.6667 - dense_1_acc_4: 0.7500 - dense_1_acc_5: 0.8667 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9333 - dense_1_acc_8: 0.9000 - dense_1_acc_9: 0.9500 - dense_1_acc_10: 0.9667 - dense_1_acc_11: 0.9833 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 0.9833 - dense_1_acc_16: 0.9833 - dense_1_acc_17: 0.9833 - dense_1_acc_18: 0.9833 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 0.9833 - dense_1_acc_22: 0.9833 - dense_1_acc_23: 0.9833 - dense_1_acc_24: 0.8333 - dense_1_acc_25: 0.9333 - dense_1_acc_26: 0.9500 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00 Epoch 36/100 60/60 [==============================] - 0s 782us/step - loss: 24.3879 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4000 - dense_1_acc_2: 0.6667 - dense_1_acc_3: 0.7167 - dense_1_acc_4: 0.8167 - dense_1_acc_5: 0.8833 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9500 - dense_1_acc_8: 0.9167 - dense_1_acc_9: 0.9500 - dense_1_acc_10: 0.9833 - dense_1_acc_11: 0.9833 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 0.9667 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 0.9833 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 0.9167 - dense_1_acc_25: 0.9500 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 0.9667 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00 Epoch 37/100
60/60 [==============================] - 0s 848us/step - loss: 23.0691 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4000 - dense_1_acc_2: 0.7000 - dense_1_acc_3: 0.7333 - dense_1_acc_4: 0.8167 - dense_1_acc_5: 0.9000 - dense_1_acc_6: 0.9167 - dense_1_acc_7: 0.9500 - dense_1_acc_8: 0.9333 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 0.9833 - dense_1_acc_12: 0.9833 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 0.9833 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 0.9833 - dense_1_acc_28: 0.9333 - dense_1_acc_29: 0.0000e+00 Epoch 38/100 60/60 [==============================] - 0s 781us/step - loss: 21.7658 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4000 - dense_1_acc_2: 0.7000 - dense_1_acc_3: 0.7333 - dense_1_acc_4: 0.8500 - dense_1_acc_5: 0.9167 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9500 - dense_1_acc_8: 0.9333 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 39/100 60/60 [==============================] - 0s 765us/step - loss: 20.5966 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4000 - dense_1_acc_2: 0.7000 - dense_1_acc_3: 0.7333 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9333 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9500 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 40/100 60/60 [==============================] - 0s 798us/step - loss: 19.4914 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4167 - dense_1_acc_2: 0.7000 - dense_1_acc_3: 0.8000 - dense_1_acc_4: 0.8667 - dense_1_acc_5: 0.9500 - dense_1_acc_6: 0.9500 - dense_1_acc_7: 0.9667 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 0.9833 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 41/100 60/60 [==============================] - 0s 783us/step - loss: 18.4783 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4167 - dense_1_acc_2: 0.7167 - dense_1_acc_3: 0.8000 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 42/100 60/60 [==============================] - 0s 781us/step - loss: 17.5489 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4167 - dense_1_acc_2: 0.7333 - dense_1_acc_3: 0.8333 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 0.9667 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 0.9833 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 43/100 60/60 [==============================] - 0s 790us/step - loss: 16.6690 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4167 - dense_1_acc_2: 0.7500 - dense_1_acc_3: 0.8667 - dense_1_acc_4: 0.8833 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 44/100 60/60 [==============================] - 0s 798us/step - loss: 15.8702 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4167 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9000 - dense_1_acc_5: 0.9667 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 45/100 60/60 [==============================] - 0s 777us/step - loss: 15.1186 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4333 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9167 - dense_1_acc_5: 0.9833 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 46/100 60/60 [==============================] - 0s 798us/step - loss: 14.4511 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4500 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 47/100 60/60 [==============================] - 0s 724us/step - loss: 13.8319 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4667 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.8833 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 48/100 60/60 [==============================] - 0s 728us/step - loss: 13.2514 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4833 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9000 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 0.9833 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 49/100 60/60 [==============================] - 0s 731us/step - loss: 12.7410 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.4833 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9333 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 50/100 60/60 [==============================] - 0s 731us/step - loss: 12.2629 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5000 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 51/100 60/60 [==============================] - 0s 731us/step - loss: 11.8260 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7667 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9333 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 52/100 60/60 [==============================] - 0s 723us/step - loss: 11.4142 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9500 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 53/100 60/60 [==============================] - 0s 732us/step - loss: 11.0529 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 0.9833 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 0.9833 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9667 - dense_1_acc_29: 0.0000e+00 Epoch 54/100 60/60 [==============================] - 0s 781us/step - loss: 10.7221 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00 Epoch 55/100
60/60 [==============================] - 0s 765us/step - loss: 10.4101 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00 Epoch 56/100 60/60 [==============================] - 0s 782us/step - loss: 10.1212 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 0.9833 - dense_1_acc_29: 0.0000e+00 Epoch 57/100 60/60 [==============================] - 0s 773us/step - loss: 9.8562 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 58/100 60/60 [==============================] - 0s 799us/step - loss: 9.6137 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.7833 - dense_1_acc_3: 0.9500 - dense_1_acc_4: 0.9667 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 59/100 60/60 [==============================] - 0s 789us/step - loss: 9.3861 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8167 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 60/100 60/60 [==============================] - 0s 798us/step - loss: 9.1780 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8333 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 61/100 60/60 [==============================] - 0s 765us/step - loss: 8.9817 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8500 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 62/100 60/60 [==============================] - 0s 781us/step - loss: 8.8059 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9667 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 63/100 60/60 [==============================] - 0s 774us/step - loss: 8.6377 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 64/100 60/60 [==============================] - 0s 781us/step - loss: 8.4787 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 65/100 60/60 [==============================] - 0s 782us/step - loss: 8.3361 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 66/100 60/60 [==============================] - 0s 765us/step - loss: 8.1984 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5333 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 67/100 60/60 [==============================] - 0s 781us/step - loss: 8.0719 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.5500 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 0.9833 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 68/100 60/60 [==============================] - 0s 799us/step - loss: 7.9504 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 69/100 60/60 [==============================] - 0s 775us/step - loss: 7.8354 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 70/100 60/60 [==============================] - 0s 777us/step - loss: 7.7283 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 71/100 60/60 [==============================] - 0s 798us/step - loss: 7.6267 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 72/100 60/60 [==============================] - 0s 781us/step - loss: 7.5310 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 73/100
60/60 [==============================] - 0s 773us/step - loss: 7.4416 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 74/100 60/60 [==============================] - 0s 765us/step - loss: 7.3525 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 75/100 60/60 [==============================] - 0s 781us/step - loss: 7.2712 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6000 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 76/100 60/60 [==============================] - 0s 781us/step - loss: 7.1917 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 77/100 60/60 [==============================] - 0s 781us/step - loss: 7.1191 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 78/100 60/60 [==============================] - 0s 781us/step - loss: 7.0470 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 0.9833 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 79/100 60/60 [==============================] - 0s 790us/step - loss: 6.9758 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 80/100 60/60 [==============================] - 0s 782us/step - loss: 6.9114 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 81/100 60/60 [==============================] - 0s 798us/step - loss: 6.8467 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 82/100 60/60 [==============================] - 0s 781us/step - loss: 6.7877 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 83/100 60/60 [==============================] - 0s 765us/step - loss: 6.7271 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 84/100 60/60 [==============================] - 0s 773us/step - loss: 6.6714 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 85/100 60/60 [==============================] - 0s 773us/step - loss: 6.6171 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 86/100 60/60 [==============================] - 0s 781us/step - loss: 6.5649 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6167 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 87/100 60/60 [==============================] - 0s 805us/step - loss: 6.5160 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6333 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 88/100 60/60 [==============================] - 0s 786us/step - loss: 6.4667 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6333 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 89/100 60/60 [==============================] - 0s 757us/step - loss: 6.4188 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6500 - dense_1_acc_2: 0.8667 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 90/100 60/60 [==============================] - 0s 729us/step - loss: 6.3742 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 91/100
60/60 [==============================] - 0s 731us/step - loss: 6.3309 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6500 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 92/100 60/60 [==============================] - 0s 748us/step - loss: 6.2876 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.8833 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 93/100 60/60 [==============================] - 0s 740us/step - loss: 6.2470 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 94/100 60/60 [==============================] - 0s 732us/step - loss: 6.2071 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 95/100 60/60 [==============================] - 0s 740us/step - loss: 6.1678 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 96/100 60/60 [==============================] - 0s 765us/step - loss: 6.1301 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 97/100 60/60 [==============================] - 0s 798us/step - loss: 6.0928 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 98/100 60/60 [==============================] - 0s 783us/step - loss: 6.0590 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 99/100 60/60 [==============================] - 0s 831us/step - loss: 6.0246 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 Epoch 100/100 60/60 [==============================] - 0s 799us/step - loss: 5.9909 - dense_1_loss: 0.0000e+00 - dense_1_acc: 0.0667 - dense_1_acc_1: 0.6667 - dense_1_acc_2: 0.9000 - dense_1_acc_3: 1.0000 - dense_1_acc_4: 1.0000 - dense_1_acc_5: 1.0000 - dense_1_acc_6: 1.0000 - dense_1_acc_7: 1.0000 - dense_1_acc_8: 1.0000 - dense_1_acc_9: 1.0000 - dense_1_acc_10: 1.0000 - dense_1_acc_11: 1.0000 - dense_1_acc_12: 1.0000 - dense_1_acc_13: 1.0000 - dense_1_acc_14: 1.0000 - dense_1_acc_15: 1.0000 - dense_1_acc_16: 1.0000 - dense_1_acc_17: 1.0000 - dense_1_acc_18: 1.0000 - dense_1_acc_19: 1.0000 - dense_1_acc_20: 1.0000 - dense_1_acc_21: 1.0000 - dense_1_acc_22: 1.0000 - dense_1_acc_23: 1.0000 - dense_1_acc_24: 1.0000 - dense_1_acc_25: 1.0000 - dense_1_acc_26: 1.0000 - dense_1_acc_27: 1.0000 - dense_1_acc_28: 1.0000 - dense_1_acc_29: 0.0000e+00 执行了:0分30秒
⑤ 你可以看到模型的损失逐渐减少。现在你已经训练好了一个模型,让我们继续最后一部分以实现推理算法并生成一些乐曲!
4. 生成音乐¶
① 你现在拥有一个训练好的模型,该模型已经学习了许多爵士独奏。
② 现在让我们使用此模型来合成新音乐。
4.1 预测和采样¶

① 在采样的每个步骤中,你将以LSTM先前状态的激活“a”和单元状态“c”作为输入,向前传播一步,并获得新的输出激活以及单元状态。
② 然后,和之前一样使用densor通过新的激活a来生成输出。
③ 首先,我们将初始化x0以及LSTM激活,并将单元值a0和c0初始化为零。
④ 你将要构建一个函数来为你进行此推断。
⑤ 你的函数将采用你先前的模型以及你要采样的时间步长“Ty”。
⑥ 它将返回一个可以为你生成序列的keras模型。
⑦ 此外,该函数包含78个单位的密集层和激活函数。
① 练习:实现以下函数以采样一系列音乐值。
② 这是在for循环内生成$T_y$输出字符需要实现的一些关键步骤:
- 步骤2.A:使用LSTM_Cell,它输入上一步的“c”和“a”来生成当前步骤的“c”和“a”。
- 步骤2.B:使用densor(先前定义)在“a”上计算softmax,以获取当前步骤的输出。
- 步骤2.C:将刚刚生成的输出添加到outputs中并保存。
- 步骤2.D:将x采样为“out”的独热向量(预测),以便将其传递到下一个LSTM步骤。我们已经提供了这行代码,其中使用了Lambda 函数。
- x = Lambda(one_hot)(out)
- 说明:这行代码实际上不是使用out中的概率对值进行随机采样,而是在每个步骤中使用argmax选择最可能的一个值。
def music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 100):
"""
参数:
LSTM_cell -- 来自model()的训练过后的LSTM单元,是keras层对象。
densor -- 来自model()的训练过后的"densor",是keras层对象
n_values -- 整数,唯一值的数量
n_a -- LSTM单元的数量
Ty -- 整数,生成的是时间步的数量
返回:
inference_model -- Kears模型实体
"""
# 定义模型输入的维度
x0 = Input(shape=(1,n_values))
# 定义s0,初始化隐藏状态
a0 = Input(shape=(n_a,),name="a0")
c0 = Input(shape=(n_a,),name="c0")
a = a0
c = c0
x = x0
# 步骤1:创建一个空的outputs列表来保存预测值。
outputs = []
# 步骤2:遍历Ty,生成所有时间步的输出
for t in range(Ty):
# 步骤2.A:在LSTM中单步传播
a, _, c = LSTM_cell(x, initial_state=[a, c])
# 步骤2.B:使用densor()应用于LSTM_Cell的隐藏状态输出
out = densor(a)
# 步骤2.C:预测值添加到"outputs"列表中
outputs.append(out)
# 根据“out”选择下一个值,并将“x”设置为所选值的一个独热编码,
# 该值将在下一步作为输入传递给LSTM_cell。我们已经提供了执行此操作所需的代码
x = Lambda(one_hot)(out)
# 创建模型实体
inference_model = Model(inputs=[x0, a0, c0], outputs=outputs)
return inference_model
③ 运行下面的单元格以定义你的模型。该模型经过硬编码以生成50个值。
# 获取模型实体,模型被硬编码以产生50个值
inference_model = music_inference_model(LSTM_cell, densor, n_values = 78, n_a = 64, Ty = 50)
④ 最后,创建零向量,你将使用它们初始化x和LSTM状态变量a和c。
#创建用于初始化x和LSTM状态变量a和c的零向量。
x_initializer = np.zeros((1, 1, 78))
a_initializer = np.zeros((1, n_a))
c_initializer = np.zeros((1, n_a))
① 练习:实现predict_and_sample()。
② 此函数接受许多参数,包括输入[x_initializer, a_initializer, c_initializer]。
③ 为了预测与此输入相对应的输出,你将需要执行3个步骤:
- 根据你的输入集,使用模型预测输出。输出pred应该是长度为20的列表,其中每个元素都是一个形状为($T_y$, n_values)的numpy数组。
- 将pred转换为$T_y$索引的numpy数组。通过使用pred列表中元素的argmax来计算每个对应的索引。
- 将索引转换为独热向量表示。
def predict_and_sample(inference_model, x_initializer = x_initializer, a_initializer = a_initializer,
c_initializer = c_initializer):
"""
使用模型预测当前值的下一个值。
参数:
inference_model -- keras的实体模型
x_initializer -- 初始化的独热编码,维度为(1, 1, 78)
a_initializer -- LSTM单元的隐藏状态初始化,维度为(1, n_a)
c_initializer -- LSTM单元的状态初始化,维度为(1, n_a)
返回:
results -- 生成值的独热编码向量,维度为(Ty, 78)
indices -- 所生成值的索引矩阵,维度为(Ty, 1)
"""
# 步骤1:模型来预测给定x_initializer, a_initializer and c_initializer的输出序列
pred = inference_model.predict([x_initializer, a_initializer, c_initializer])
# 步骤2:将“pred”转换为具有最大概率的索引数组np.array()。
indices = np.argmax(pred, axis=-1)
# 步骤3:将索引转换为它们的一个独热编码。
results = to_categorical(indices, num_classes=78)
return results, indices
① 由于Keras的结果并非完全可预测,因此你的结果可能会有所不同。
② 但是,如果你如上所述用model.fit()将LSTM_cell训练了正好100次迭代,那么你很有可能会观察到一系列不完全相同的索引。
③ 此外,你应该注意:np.argmax(results [12])是list(indices [12:18])的第一个元素,np.argmax(results [17])是list(indices[12:18]的最后一个元素)。
results, indices = predict_and_sample(inference_model, x_initializer, a_initializer, c_initializer)
print("np.argmax(results[12]) =", np.argmax(results[12]))
print("np.argmax(results[17]) =", np.argmax(results[17]))
print("list(indices[12:18]) =", list(indices[12:18]))
np.argmax(results[12]) = 39 np.argmax(results[17]) = 53 list(indices[12:18]) = [array([39], dtype=int64), array([9], dtype=int64), array([22], dtype=int64), array([5], dtype=int64), array([37], dtype=int64), array([53], dtype=int64)]
4.2 生成音乐¶
① 最后,你准备好生成音乐了。你的RNN会生成一个值序列。
② 以下代码首先通过调用你的predict_and_sample()函数来生成音乐。然后,将这些值后期处理为和弦(意味着可以同时演奏多个值或音符)。
③ 大多数计算音乐算法都使用某些后期处理,因为没有这种后期处理很难生成听起来不错的音乐。
④ 后期处理通过诸如确保相同的声音不会重复太多,两个连续的音符彼此之间的音高相距不远等来处理生成的音频。
⑤ 可能有人争辩说,这些后期处理步骤中有很多都是黑客。
⑥ 同样,很多音乐生成文学也集中于手工制作后处理器,并且许多输出质量取决于后期处理的质量,而不仅仅是RNN的质量。
⑦ 但是这种后期处理的确有很大的不同,因此在我们的实现中也试着使用它。
⑧ 让我们开始尝试制作音乐吧!
① 运行以下单元格来生成音乐并将其记录到你的out_stream中。这可能需要几分钟。
out_stream = generate_music(inference_model)
Predicting new values for different set of chords.
Generated 51 sounds using the predicted values for the set of chords ("1") and after pruning
Generated 49 sounds using the predicted values for the set of chords ("2") and after pruning
Generated 50 sounds using the predicted values for the set of chords ("3") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("4") and after pruning
Generated 51 sounds using the predicted values for the set of chords ("5") and after pruning
Your generated music is saved in output/my_music.midi
② 要试听音乐,请单击File->Open...,然后转到"output/" 并下载 "my_music.midi"。
③ 你可以使用可读取Midi文件的应用程序在计算机上播放该文件,也可以使用免费在线转换工具"MIDI to mp3"将其转换为mp3。
IPython.display.Audio('./datasets/30s_trained_model.mp3')
① 恭喜!你已经到了此笔记本的结尾部分。
② 这是你应该记住的:
- 序列模型可用于生成音乐值,然后将其后处理为Midi音乐。
- 可以使用非常相似的模型来生成恐龙名称或生成音乐,主要区别是模型的输入。
- 在Keras中,序列生成包括定义具有共享权重的网络层,然后在不同的时间步$1, \ldots, T_x$中重复这些步骤。
③ 最后恭喜你完成此任务并创作了一首爵士小歌!