YOLOv5改进系列(19)——替换主干网络之Swin TransformerV1(参数量更小的ViT模型)

🚀一、Swin TransformerV1介绍
- 论文题目:《Swin Transformer Hierarchical Vision Transformer using Shifted Windows》
- 原文地址: https://arxiv.org/pdf/2103.14030.pdf
- 源码地址:https://github.com/microsoft/Swin-Transformer

这篇论文获得了2021 ICCV最佳论文,屠榜了各大CV任务,还是很值得拜读一下的。
直通车→
1.1 简介
Swin TransformerV1是继ViT之后的Transformer在CV领域的巅峰之作,性能优于DeiT、ViT和EfficientNet等主干网络,已经替代经典的CNN架构,成为了计算机视觉领域通用的backbone。
它基于ViT模型的思想,创新性地引入了滑动窗口机制,让模型能够学习到跨窗口的信息,同时通过下采样层,使得模型能够处理超分辨率的图片,节省计算量以及能够关注全局和局部的信息。
主要改进:
(1)基于局部窗口做注意力
(2)将层次性、局部性和平移不变性等先验引入Transformer网络结构设计
(3)关键部分是提出了Shift window移动窗口(W-MSA、SW-MSA),改进了ViT中忽略局部窗口之间相关性的问题。
(4)使用cyclic-shift 循环位移和mask机制,保证计算量不变,并忽略不相关部分的注意力权重
(5)加入了相对位置偏置B
1.2 网络结构
总体架构

- (a)Swin Transformer (Swin- t)的结构
- (b)两个连续的Swin transformer块
- W-MSA是具有规则窗口配置
- SW-MSA是移位窗口配置的多头自注意模块
Swin Transformer Block
Swin Transformer的构建方法是将Transformer块中的标准Multi-head self-attention(MSA)模块替换为基于移动窗口的模块,其他层保持不变。

如上图所示,Swin Transformer模块由基于MSA的平移窗口模块和介于GELU非线性之间的2层MLP组成。在每个MSA模块和每个MLP之前应用一个 LN层(层归一化),在每个模块之后应用一个残差连接。
连续Swin Transformer Block计算为:

其中,W-MSA 为窗口MSA,SW-MSA 为移动窗口MSA。
前者解决规模问题,后者解决计算复杂度问题。
1.3 实验
(1)在ImageNet-1K上进行图像分类

(2)COCO数据集上的目标检测

(3)在ADE20K上语义分割

(4)消融实验
表4是在分类、检测、分割任务上进行的实验

表5是比较不同attention方法还有耗时情况

表6是使用不同的self-attention比较

🚀二、具体更换方法
第①步:在common.py中添加Swin Transformer模块
将以下代码复制粘贴到common.py文件的末尾
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- import numpy as np
- from typing import Optional
- def drop_path_f(x, drop_prob: float = 0., training: bool = False):
- if drop_prob == 0. or not training:
- return x
- keep_prob = 1 - drop_prob
- shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
- random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
- random_tensor.floor_() # binarize
- output = x.div(keep_prob) * random_tensor
- return output
- class DropPath(nn.Module):
- def __init__(self, drop_prob=None):
- super(DropPath, self).__init__()
- self.drop_prob = drop_prob
- def forward(self, x):
- return drop_path_f(x, self.drop_prob, self.training)
- def window_partition(x, window_size: int):
- """
- 将feature map按照window_size划分成一个个没有重叠的window
- Args:
- x: (B, H, W, C)
- window_size (int): window size(M)
- Returns:
- windows: (num_windows*B, window_size, window_size, C)
- """
- B, H, W, C = x.shape
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
- # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
- # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
- return windows
- def window_reverse(windows, window_size: int, H: int, W: int):
- """
- 将一个个window还原成一个feature map
- Args:
- windows: (num_windows*B, window_size, window_size, C)
- window_size (int): Window size(M)
- H (int): Height of image
- W (int): Width of image
- Returns:
- x: (B, H, W, C)
- """
- B = int(windows.shape[0] / (H * W / window_size / window_size))
- # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
- # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
- # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
- return x
- class Mlp(nn.Module):
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
- """
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.drop1 = nn.Dropout(drop)
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop2 = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop1(x)
- x = self.fc2(x)
- x = self.drop2(x)
- return x
- class WindowAttention(nn.Module):
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
- It supports both of shifted and non-shifted window.
- Args:
- dim (int): Number of input channels.
- window_size (tuple[int]): The height and width of the window.
- num_heads (int): Number of attention heads.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- """
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):
- super().__init__()
- self.dim = dim
- self.window_size = window_size # [Mh, Mw]
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = head_dim ** -0.5
- # define a parameter table of relative position bias
- self.relative_position_bias_table = nn.Parameter(
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH]
- # get pair-wise relative position index for each token inside the window
- coords_h = torch.arange(self.window_size[0])
- coords_w = torch.arange(self.window_size[1])
- coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw]
- coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw]
- # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw]
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2]
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
- relative_coords[:, :, 1] += self.window_size[1] - 1
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
- relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw]
- self.register_buffer("relative_position_index", relative_position_index)
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
- self.softmax = nn.Softmax(dim=-1)
- def forward(self, x, mask: Optional[torch.Tensor] = None):
- """
- Args:
- x: input features with shape of (num_windows*B, Mh*Mw, C)
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
- """
- # [batch_size*num_windows, Mh*Mw, total_embed_dim]
- B_, N, C = x.shape
- # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
- # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
- # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
- # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
- # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
- q = q * self.scale
- attn = (q @ k.transpose(-2, -1))
- # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw]
- attn = attn + relative_position_bias.unsqueeze(0)
- if mask is not None:
- # mask: [nW, Mh*Mw, Mh*Mw]
- nW = mask.shape[0] # num_windows
- # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
- # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
- attn = attn.view(-1, self.num_heads, N, N)
- attn = self.softmax(attn)
- else:
- attn = self.softmax(attn)
- attn = self.attn_drop(attn)
- # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
- # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
- # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
- #x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
- x = (attn.to(v.dtype) @ v).transpose(1, 2).reshape(B_, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
- class SwinTransformerBlock(nn.Module):
- r""" Swin Transformer Block.
- Args:
- dim (int): Number of input channels.
- num_heads (int): Number of attention heads.
- window_size (int): Window size.
- shift_size (int): Shift size for SW-MSA.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
- super().__init__()
- self.dim = dim
- self.num_heads = num_heads
- self.window_size = window_size
- self.shift_size = shift_size
- self.mlp_ratio = mlp_ratio
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
- self.norm1 = norm_layer(dim)
- self.attn = WindowAttention(
- dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
- attn_drop=attn_drop, proj_drop=drop)
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
- def forward(self, x, attn_mask):
- H, W = self.H, self.W
- B, L, C = x.shape
- assert L == H * W, "input feature has wrong size"
- shortcut = x
- x = self.norm1(x)
- x = x.view(B, H, W, C)
- # pad feature maps to multiples of window size
- # 把 feature map 给 pad 到 window size 的整数倍
- pad_l = pad_t = 0
- pad_r = (self.window_size - W % self.window_size) % self.window_size
- pad_b = (self.window_size - H % self.window_size) % self.window_size
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
- _, Hp, Wp, _ = x.shape
- # cyclic shift
- if self.shift_size > 0:
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
- else:
- shifted_x = x
- attn_mask = None
- # partition windows
- x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C]
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C]
- # W-MSA/SW-MSA
- attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C]
- # merge windows
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C]
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C]
- # reverse cyclic shift
- if self.shift_size > 0:
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
- else:
- x = shifted_x
- if pad_r > 0 or pad_b > 0:
- # 把前面pad的数据移除掉
- x = x[:, :H, :W, :].contiguous()
- x = x.view(B, H * W, C)
- # FFN
- x = shortcut + self.drop_path(x)
- x = x + self.drop_path(self.mlp(self.norm2(x)))
- return x
- class SwinStage(nn.Module):
- """
- A basic Swin Transformer layer for one stage.
- Args:
- dim (int): Number of input channels.
- depth (int): Number of blocks.
- num_heads (int): Number of attention heads.
- window_size (int): Local window size.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
- drop (float, optional): Dropout rate. Default: 0.0
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
- """
- def __init__(self, dim, c2, depth, num_heads, window_size,
- mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
- drop_path=0., norm_layer=nn.LayerNorm, use_checkpoint=False):
- super().__init__()
- assert dim == c2, r"no. in/out channel should be same"
- self.dim = dim
- self.depth = depth
- self.window_size = window_size
- self.use_checkpoint = use_checkpoint
- self.shift_size = window_size // 2
- # build blocks
- self.blocks = nn.ModuleList([
- SwinTransformerBlock(
- dim=dim,
- num_heads=num_heads,
- window_size=window_size,
- shift_size=0 if (i % 2 == 0) else self.shift_size,
- mlp_ratio=mlp_ratio,
- qkv_bias=qkv_bias,
- drop=drop,
- attn_drop=attn_drop,
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
- norm_layer=norm_layer)
- for i in range(depth)])
- def create_mask(self, x, H, W):
- # calculate attention mask for SW-MSA
- # 保证Hp和Wp是window_size的整数倍
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
- # 拥有和feature map一样的通道排列顺序,方便后续window_partition
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1]
- h_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- w_slices = (slice(0, -self.window_size),
- slice(-self.window_size, -self.shift_size),
- slice(-self.shift_size, None))
- cnt = 0
- for h in h_slices:
- for w in w_slices:
- img_mask[:, h, w, :] = cnt
- cnt += 1
- mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1]
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw]
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]
- # [nW, Mh*Mw, Mh*Mw]
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
- return attn_mask
- def forward(self, x):
- B, C, H, W = x.shape
- x = x.permute(0, 2, 3, 1).contiguous().view(B, H * W, C)
- attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw]
- for blk in self.blocks:
- blk.H, blk.W = H, W
- if not torch.jit.is_scripting() and self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x, attn_mask)
- else:
- x = blk(x, attn_mask)
- x = x.view(B, H, W, C)
- x = x.permute(0, 3, 1, 2).contiguous()
- return x
- class PatchEmbed(nn.Module):
- """
- 2D Image to Patch Embedding
- """
- def __init__(self, in_c=3, embed_dim=96, patch_size=4, norm_layer=None):
- super().__init__()
- patch_size = (patch_size, patch_size)
- self.patch_size = patch_size
- self.in_chans = in_c
- self.embed_dim = embed_dim
- self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
- def forward(self, x):
- _, _, H, W = x.shape
- # padding
- # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
- pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
- if pad_input:
- # to pad the last 3 dimensions,
- # (W_left, W_right, H_top,H_bottom, C_front, C_back)
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],
- 0, self.patch_size[0] - H % self.patch_size[0],
- 0, 0))
- # 下采样patch_size倍
- x = self.proj(x)
- B, C, H, W = x.shape
- # flatten: [B, C, H, W] -> [B, C, HW]
- # transpose: [B, C, HW] -> [B, HW, C]
- x = x.flatten(2).transpose(1, 2)
- x = self.norm(x)
- # view: [B, HW, C] -> [B, H, W, C]
- # permute: [B, H, W, C] -> [B, C, H, W]
- x = x.view(B, H, W, C)
- x = x.permute(0, 3, 1, 2).contiguous()
- return x
- class PatchMerging(nn.Module):
- r""" Patch Merging Layer.
- Args:
- dim (int): Number of input channels.
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
- """
- def __init__(self, dim, c2, norm_layer=nn.LayerNorm):
- super().__init__()
- assert c2 == (2 * dim), r"no. out channel should be 2 * no. in channel "
- self.dim = dim
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
- self.norm = norm_layer(4 * dim)
- def forward(self, x):
- """
- x: B, C, H, W
- """
- B, C, H, W = x.shape
- # assert L == H * W, "input feature has wrong size"
- x = x.permute(0, 2, 3, 1).contiguous()
- # x = x.view(B, H*W, C)
- # padding
- # 如果输入feature map的H,W不是2的整数倍,需要进行padding
- pad_input = (H % 2 == 1) or (W % 2 == 1)
- if pad_input:
- # to pad the last 3 dimensions, starting from the last dimension and moving forward.
- # (C_front, C_back, W_left, W_right, H_top, H_bottom)
- # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
- x0 = x[:, 0::2, 0::2, :] # [B, H/2, W/2, C]
- x1 = x[:, 1::2, 0::2, :] # [B, H/2, W/2, C]
- x2 = x[:, 0::2, 1::2, :] # [B, H/2, W/2, C]
- x3 = x[:, 1::2, 1::2, :] # [B, H/2, W/2, C]
- x = torch.cat([x0, x1, x2, x3], -1) # [B, H/2, W/2, 4*C]
- x = x.view(B, -1, 4 * C) # [B, H/2*W/2, 4*C]
- x = self.norm(x)
- x = self.reduction(x) # [B, H/2*W/2, 2*C]
- x = x.view(B, int(H / 2), int(W / 2), C * 2)
- x = x.permute(0, 3, 1, 2).contiguous()
- return x
第②步:在yolo.py文件里的parse_model函数加入类名
首先找到yolo.py里面parse_model函数的这一行

加入 PatchMerging, PatchEmbed, SwinStage这三个模块

第③步:创建自定义的yaml文件
yaml文件完整代码
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- # Parameters
- nc: 1 # number of classes
- depth_multiple: 0.33 # model depth multiple
- width_multiple: 0.25 # layer channel multiple
- anchors:
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
- # YOLOv5 v6.0 backbone
- backbone:
- # [from, number, module, args]
- # input [b, 1, 640, 640]
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [b, 64, 320, 320]
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [b, 128, 160, 160]
- [-1, 3, C3, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [b, 256, 80, 80]
- [-1, 6, C3, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [b, 512, 40, 40]
- [-1, 9, C3, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [b, 1024, 20, 20]
- [-1, 3, C3, [1024]],
- [-1, 1, SwinStage, [1024, 2, 8, 4]], # [outputChannel, blockDepth, numHeaders, windowSize]
- [-1, 1, SPPF, [1024, 5]], # 10
- ]
- # YOLOv5 v6.0 head
- head:
- [[-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3, [512, False]], # 14
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3, [256, False]], # 18 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 15], 1, Concat, [1]], # cat head P4
- [-1, 3, C3, [512, False]], # 21 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 11], 1, Concat, [1]], # cat head P5
- [-1, 3, C3, [1024, False]], # 24 (P5/32-large)
- [[18, 21, 24], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
第④步:验证是否加入成功
运行yolo.py

这样就OK了!
配置中遇到的问题

在服务器上运行时遇到了这样的报错
TypeError: meshgrid() got an unexpected keyword argument ‘indexing‘
查了一下是torch版本导致的,现在版本已经没有indexing这个参数了(6.1还可以),但是默认就是这个参数。
解决方法:
找到 common.py 文件的 WindowAttention(nn.Module)类
直接删掉 indexing="ij" 即可

PS:
在我的数据集上,Swin TransformerV1的确参数量很少,但反而掉了0.2~
我的模型已经确定下来了,所以没有尝试改进这个。如果有感兴趣的同学可以进一步尝试!